A time-discrete model for dynamic fracture based on crack regularization

Blaise Bourdin1, Christopher J. Larsen2, Casey L. Richardson3
1Department of Mathematics and Center for Computation & Technology, Louisiana State University, Baton Rouge, USA
2Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, USA
3Department of Mathematics, Worcester Polytechnic Institute, Worcester, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ambrosio L, Braides A (1995) Energies in SBV and variational models in fracture mechanics. In: Homogenization and applications to material sciences (Nice, 1995), volume 9 of GAKUTO Internat. Ser Math Sci Appl Gakkōtosho, Tokyo, pp 1–22

Ambrosio L, Tortorelli VM (1990) Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Comm Pure Appl Math 43(8): 999–1036

Ambrosio L, Tortorelli VM (1992) On the approximation of free discontinuity problems. Boll Un Mat Ital B (7) 6(1): 105–123

Amor H, Marigo J-J, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J Mech Phys Solids 57(8): 1209–1229

Aranson IS, Kalatsky VA, Vinokur VM (2000) Continuum field description of crack propagation. Phys Rev Lett 85(1): 118–121

Balay S, Buschelman K, Eijkhout V, Gropp WD, Kaushik D, Knepley MG, McInnes LC, Smith BF, Zhang H (2008) PETSc users manual. ANL-95/11-Revision 3.0.0, Argonne National Laboratory

Balay S, Buschelman K, Gropp WD, Kaushik D, Knepley MG, McInnes LC, Smith BF, Zhang H (2009) PETSc Web page, http://www.mcs.anl.gov/petsc

Bellettini G, Coscia A (1994) Discrete approximation of a free discontinuity problem. Numer Funct Anal Optim 15(3-4): 201–224

Bourdin B (2007) Numerical implementation of the variational formulation for quasi-static brittle fracture. Interfaces Free Bound 9(3): 411–430

Bourdin B, Francfort GA, Marigo J-J (2000) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48(4): 797–826

Bourdin B, Francfort GA, Marigo J-J (2008) The variational approach to fracture. Springer

Braides A (1998) Approximation of free-discontinuity problems. Number 1694 in Lecture Notes in Mathematics. Springer

Braides A (2002) Γ-convergence for beginners, volume 22 of Oxford Lecture series in mathematics and its applications. Oxford University Press, Oxford

Bronsard L, Kohn RV (1990) On the slowness of phase boundary motion in one space dimension. Comm. Pure Appl Math 43(8): 983–997

Corson F, Adda-Bedia M, Henry H, Katzav E (2009) Thermal fracture as a framework for crack propagation law. Int J Fract 158: 1–14

Dal Maso G (1993) An introduction to Γ-convergence. Birkhäuser, Boston

Del Piero G, Lancioni G, March R (2007) A variational model for fracture mechanics: numerical experiments. J Mech Phys Solids 55: 2513–2537

Eastgate LO, Sethna JP, Rauscher M, Cretegny T, Chen C-S, Myers CR (2002) Fracture in mode I using a conserved phase-field model. Phys Rev 65(3): 036117

Francfort GA, Larsen CJ (2003) Existence and convergence for quasi-static evolution in brittle fracture. Comm Pure Appl Math 56(10): 1465–1500

Francfort GA, Marigo J-J (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 46(8): 1319–1342

Freddi F, Royer Carfagni G (2010) Regularized variational theories of fracture: a unified approach. J Mech Phys Solids 58(8): 1154–1174

Giacomini A (2005) Ambrosio-Tortorelli approximation of quasi-static evolution of brittle fractures. Calc Var Partial Differ Equ 22(2): 129–172

Grandinetti, L (eds) (2007) TeraGrid: analysis of organization, system architecture, and middleware enabling new types of applications, advances in parallel computing. IOS Press, Amsterdam

Griffith AA (1921) The phenomena of rupture and flow in solids. Philos Trans R Soc Lond 221: 163–198

Hakim V, Karma A (2009) Laws of crack motion and phase-field models of fracture. J Mech Phys Solids 57(2): 342– 368

Karma A, Kessler DA, Levine H (2001) Phase-field model of mode III dynamic fracture. Phys Rev Lett 87(4): 045501

Karma A, Lobkovsky AE (2004) Unsteady crack motion and branching in a phase-field model of brittle fracture. Phys Rev Lett 92(24): 245510

Keyes DE, Reynolds DR, Woodward CS (2006) Implicit solvers for large-scale nonlinear problems. J Phys Conf Ser 46: 433–442

Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture: a practical application to the french Panthéon. J Elast 95(1–2): 1–30

Larsen CJ, Ortner C, Süli E (2010) Existence of solutions to a regularized model of dynamic fracture. Math Models Methods Appl Sci 20: 1021–1048

Larsen CJ (2010) Models for dynamic fracture based on Griffith’s criterion. In: Hackl K (eds) IUTAM symposium on variational concepts with applications to the mechanics of materials. Springer, Berlin, pp 131–140

Lawn B (1993) Fracture of brittle solids. 2. Cambridge University Press, Cambridge

Marconi VI, Jagla EA (2005) Diffuse interface approach to brittle fracture. Phys Rev 71(3): 036110

Modica L, Mortola S (1977) Il limite nella Γ–convergenza di una famiglia di funzionali ellittici. Boll Un Mat Ital A (5) 14(3): 526–529

Modica L, Mortola S (1977) Un esempio di Γ–convergenza. Boll Un Mat Ital B (5) 14(1): 285–299