A theory of crack initiation and growth in viscoelastic media II. Approximate methods of analysis
Tóm tắt
Starting with equations developed in Part I for the opening mode of displacement, simple, approximate relations are derived for predicting the time of fracture initiation and crack tip velocity in linearly viscoelastic media. First we use the assumption that the second derivative of the logarithm of creep compliance with respect to logarithm of time is small (which is normally valid for viscoelastic materials); we next derive a relation between instantaneous values of tip velocity and stress intensity factor. This result is then used to examine some characteristics of crack growth behavior. Finally, some results are obtained for the separate problem of predicting the time at which propagation initiates.
Tài liệu tham khảo
R. A., Schapery, Int. J. Fracture, 11 (1975) 141–159.
M. A., Biot, J. Appl. Phys., 25 (1954) 1385–1391.
R. A. Schapery, Proc. IUT AM Symp. 1968: Thermo-inelasticity, Bruno A. Boley Ed., Springer-Verlag (1970) 259–285.
B. Van der Pol and H. Bremmer, Operational Calculus, Cambridge, 1955.
R. A. Schapery, Viscoelastic Behavior and Analysis of Composite Materials, Composite Materials, 2, G.P. Sendeckyj Ed., Academic Press (1974) Ch. 4.
R. A. Schapery, Unpublished lecture notes.
W. G., Knauss and H., Dietmann, Int. J. Engineering Science, 8 (1970) 643–656.
W. G., Knauss, Int. J. Fracture Mechanics, 6 (1970) 7–20.
H. K., Mueller and W. G., Knauss, J. Applied Mechanics, 38 Series E (1971) 483–488.
W. G. Knauss, On the Steady Propagation of a Crack in a Viscoelastic Sheet: Experiments and Analysis, in: Deformation and Fracture of High Polymers, H. Henning Kausch, John A. Hassell and Robert I. Jaffee, Eds., Plenum Press (1974) 501–541.
R.A. Schapery, On a Theory of Crack Growth in Viscoelastic Media, Texas A & M Unv., Rpt. MM 2764-73-1, March 1973.
M. L., Williams, Int. J. Fracture Mechanics, 1 (1965) 292–310.
M. P., Wnuk and W. G., Knauss, Int. J. Solids Structures, 6 (1970) 995–1009.
G. C. Sih and H. Liebowitz, Mathematical Theories of Brittle Fracture, in: Fracture, II, H. Liebowitz Ed., Academic Press (1968) 67–190.
F. Erdogan and G. C. Sih, J. Basic Engr., (1963) 519–527.
J. G., Williams and P. D., Ewing, Int. J. Fracture Mechanics, 8 (1972) 441–446.
W. G., Knauss, Int. J. Fracture Mechanics, 6 (1970) 183–187.
M. L., Williams, J. Adhesion, 4 (1972) 307–332.