A theoretical study of the cis-dihydroxylation mechanism in naphthalene 1,2-dioxygenase

JBIC Journal of Biological Inorganic Chemistry - Tập 9 - Trang 439-452 - 2004
Arianna Bassan1, Margareta R. A. Blomberg1, Per E. M. Siegbahn1
1Department of Physics, Stockholm Center for Physics, Astronomy and Biotechnology, Stockholm University, Stockholm, Sweden

Tóm tắt

The catalytic mechanism of naphthalene 1,2-dioxygenase has been investigated by means of hybrid density functional theory. This Rieske-type enzyme, which contains an active site hosting a mononuclear non-heme iron(II) complex, uses dioxygen and two electrons provided by NADH to carry out the cis-dihydroxylation of naphthalene. Since a (hydro)peroxo-iron(III) moiety has been proposed to be involved in the catalytic cycle, it was probed whether and how this species is capable of cis-dihydroxylation of the aromatic substrate. Different oxidation and protonation states of the Fe–O2 complex were studied on the basis of the crystal structure of the enzyme with oxygen bound side-on to iron. It was found that feasible reaction pathways require a protonated peroxo ligand, FeIII–OOH; the deprotonated species, the peroxo-iron(III) complex, was found to be inert toward naphthalene. Among the different chemical patterns which have been explored, the most accessible one involves an epoxide intermediate, which may subsequently evolve toward an arene cation, and finally to the cis-diol. The possibility that an iron(V)-oxo species is formed prior to substrate hydroxylation was also examined, but found to implicate a rather high energy barrier. In contrast, a reasonably low barrier might lead to a high-valent iron-oxo species [i.e. iron(IV)-oxo] if a second external electron is supplied to the mononuclear iron center before dioxygenation.

Tài liệu tham khảo

Gibson DT, Parales RE (2000) Curr Opin Biotechnol 11:235–243 Jeffrey AM, Yeh HJC, Jerina DM, Patel TR, Davey JF, Gibson DT (1975) Biochemistry 14:575–584 Ramaswamy S (2001) In: Messerschmidt A, Huber R, Poulos T, Wieghardt K (eds) Handbook of metalloproteins. Wiley, Chichester, pp 613–621 Nordlund P (2001) In: Bertini I, Sigel A, Sigel H (eds) Handbook of metalloproteins. Dekker, New York, pp 511–517 Karlson A (2002) PhD thesis. Swedish University of Agricultural Sciences, Uppsala Kauppi B, Lee K, Carredano E, Parales RE, Gibson DT, Eklund H, Ramaswamy S (1998) Structure 6:571–586 Parales RE, Parales JV, Gibson DT (1999) J Bacteriol 181:1831–1837 Hegg EL, Que L Jr (1997) Eur J Biochem 250:625–629 Que L Jr (2000) Nat Struct Biol 7:182–184 Que L Jr, Ho RYN (1996) Chem Rev 96:2607–2624 Lange SJ, Que L Jr (2002) Curr Opin Chem Biol 6:193–201 Bugg TDH (2001) Curr Opin Chem Biol 5:550–555 Solomon EI, Brunold TC, Davis MI, Kemseley JN, Lee S-K, Lehnert N, Neese F, Skulan AJ, Yang Y-S, Zhou J (2000) Chem Rev 100:235–349 Ryle MJ, Hausinger R (2002) Curr Opin Chem Biol 6:193–201 Carredano E, Karlsson A, Kauppi B, Devapriya C, Parales RE, Parales JV, Lee K, Gibson DT, Eklund H, Ramaswamy S (2000) J Mol Biol 296:701–712 Wolfe MD, Parales JV, Gibson DT, Lipscomb JD (2001) J Biol Chem 276:1945–1953 Lee K (1999) J Bacteriol 181:2719–2725 Wolfe MD, Lipscomb JD (2003) J Biol Chem 278:829–835 Karlsson A, Parales JV, Parales RE, Gibson DT, Eklund H, Ramaswamy S (2003) Science 299:1039–1042 Sono M, Roach MP, Coulter ED, Dawson JH (1996) Chem Rev 96:2841–2887 Gibson DT, Resnick SM, Lee K, Brand JM, Torok DS, Wacket LP, Schocken MJ, Haigler BE (1995) J Bacteriol 177:2615–2621 Resnick SM, Lee K, Gibson DT (1996) J Ind Microbiol 17:438–457 Boyd DR, Sharma ND, Bowers NI, Boyle R, Harrison JS, Lee K, Bugg TDH, Gibson DT (2003) Org Biomol Chem 1:1298–1307 Chen K, Costas M, Kim J, Tipton AK, Que L Jr (2002) J Am Chem Soc 124:3026–3035 Chen K, Que L Jr (2001) J Am Chem Soc 123:6327–6337 Bassan A, Blomberg MRA, Siegbahn PEM, Que L Jr (2002) J Am Chem Soc 124:11056–11063 Ogliaro F, de Visser SP, Cohen S, Sharma PK, Shaik S (2002) J Am Chem Soc 124:2806–2817 Vaz ADN, McGinnity DF, Coon MJ (1998) Proc Natl Acad Sci USA 95:3555–3560 Stevens PJ, Devlin FJ, Chablowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627 Becke AD (1993) J Chem Phys 98:5648–5652 Becke AD (1992) J Chem Phys 96:2155–2160 Becke AD (1992) J Chem Phys 97:9173–9177. Lee C, Yang W, Parr RG (1998) Phys Rev B 37:785–789 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98. Gaussian, Pittsburgh Schrödinger (2000) Jaguar 4.1. Schrödinger, Portland, Oregon Vacek G, Perry JK, Langlois J-M (1999) Chem Phys Lett 310:189–194 Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310 Tannor DJ, Marten B, Murphy R, Friesner RA, Sitkoff D, Nicholls A, Ringnalda M, Goddard WA III, Honig B (1994) J Am Chem Soc 116:11875–11882 Marten B, Kim K, Cortis C, Friesner RA, Murphy RB, Ringnalda M, Sitkoff D, Honig B (1996) J Phys Chem 100:11775–11788 Siegbahn PEM (2001) J Comput Chem 22:1634–1645 Siegbahn PEM, Blomberg MRA (2000) Chem Rev 100:421–437 Curtiss LA, Raghavachari K, Tucks GW, Pople JA (1991) J Chem Phys 94:7221–7230 Curtiss LA, Raghavachari K, Redfern PC, Pople JA (1997) J Chem Phys 106:1063–1079 Blomberg MRA, Siegbahn PEM, Svensson M (1996) J Chem Phys 104:9546–9554 Ricca A, Bauschlicher CW Jr (1997) J Phys Chem A 8949–8955 Ricca A, Bauschlicher CW (1995) Theor Chim Acta 92:123–131 Siegbahn PEM, Crabtree RH (1997) J Am Chem Soc 119:3103–3113 Blomberg MRA, Siegbahn PEM (199) In: Truhlar DJ, Morokuma K (eds) Transition state modeling for catalysis. American Chemical Society, Washington, pp 49–60 Roelfes G, Vrajmasu V, Chen K, Ho RYN, Rohde J-U, Zondervan C, la Crois RM, Schudde EP, Lutz M, Spek AL, Hage R, Feringa BL, Münck E, Que L Jr (2003) Inorg Chem 42:2639–2653 Ho RYN, Roelfes G, Hermant R, Hage R, Feringa BL, Que L Jr (1999) Chem Commun 2161–2162 Neese F, Solomon EI (1998) J Am Chem Soc 120:12829–12848 Harris D, Loew GH (1998) J Am Chem Soc 120:8941–8948 Loew GH, Harris D (2000) Chem Rev 100:407–419 Shaik S, de Visser SP, Ogliaro F, Schwarz H, Schröder D (2002) Curr Opin Chem Biol 6:556–557 Bassan A, Blomberg MRA, Siegbahn PEM (2003) Chem Eur J 9:4055–4067 Kappock TJ, Caradonna JP (1996) Chem Rev 96:2659–2756 Bassan A, Blomberg MRA, Siegbahn PEM (2003) Chem Eur J 9:108–115 Borowski T, Bassan A, Siegbahn PEM (2004) Chem Eur J 10:1031–1041