A systematic review and meta-analysis of direct anterior approach versus posterior approach in total hip arthroplasty

Journal of Orthopaedic Surgery and Research - Tập 13 - Trang 1-11 - 2018
Zhao Wang1, Jing-zhao Hou1, Can-hua Wu1, Yue-jiang Zhou1, Xiao-ming Gu1, Hai-hong Wang1, Wu Feng1, Yan-xiao Cheng1, Xia Sheng1, Hong-wei Bao1
1From the department of orthopaedics, Jingjiang People’s Hospital, Taizhou City, China

Tóm tắt

This meta-analysis aimed to evaluate the postoperative clinical outcomes and safety of the direct anterior approach (DAA) versus posterior approach (PA) in total hip arthroplasty (THA). We searched PubMed, Embase, Web of Science, the Cochrane Library, and Google databases from inception to June 2018 to select studies that compared the DAA and PA for THA. Only randomized controlled trials (RCTs) were included. Outcomes included Harris hip score at 2 weeks, 6 weeks, 12 weeks, and 1 year; VAS at 24 h, 48 h, and 72 h; incision length, operation time, postoperative blood loss, length of hospital stay, and complications (intraoperative fracture, postoperative dislocation, heterotopic ossification (HO), and groin pain). Nine RCTs totaling 754 THAs (DAA group = 377, PA group = 377) met the criteria to be included in this meta-analysis. The present meta-analysis indicated that, compared with PA group, DAA group was associated with an increase of the Harris hip score at the 2-week and 4-week time points. No significant difference was found between DAA and PA groups of the Harris hip scores at 12 weeks, 1 year length of hospital stay (p > 0.05). DAA group was associated with a reduction of the VAS at 24 h, 48 h, and 72 h with statistical significance (p < 0.05). What is more, DAA was associated with a reduction of the incision length and postoperative blood loss (p < 0.05). There was no significant difference between the operation time and complications (intraoperative fracture, postoperative dislocation, HO, and groin pain). In THA patients, compared with PA, DAA was associated with an early functional recovery and less pain scores. What is more, DAA was associated with shorter incision length and blood loss.

Tài liệu tham khảo

Chen X, Xiong J, Wang P, et al. Robotic-assisted compared with conventional total hip arthroplasty: systematic review and meta-analysis. Postgrad Med J. 2018;94:335–41. Yang Q, Zhang Z, Xin W, Li A. Preoperative intravenous glucocorticoids can decrease acute pain and postoperative nausea and vomiting after total hip arthroplasty: a PRISMA-compliant meta-analysis. Medicine (Baltimore). 2017;96:e8804. Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am. 2007;89:780–5. Zhao Z, Ma X, Ma J, Sun X, Li F, Lv J. A systematic review and meta-analysis of the topical administration of fibrin sealant in total hip arthroplasty. Sci Rep. 2018;8:78. Anakwe RE, Jenkins PJ, Moran M. Predicting dissatisfaction after total hip arthroplasty: a study of 850 patients. J Arthroplast. 2011;26:209–13. Jones CA, Beaupre LA, Johnston DW, Suarez-Almazor ME. Total joint arthroplasties: current concepts of patient outcomes after surgery. Rheum Dis Clin N Am. 2007;33:71–86. Zomar BO, Bryant D, Hunter S, Howard JL, Vasarhelyi EM, Lanting BA. A randomised trial comparing spatio-temporal gait parameters after total hip arthroplasty between the direct anterior and direct lateral surgical approaches. Hip Int. 2018; https://doi.org/10.1177/1120700018760262. Sutphen SA, Berend KR, Morris MJ, Lombardi AV Jr. Direct anterior approach has lower deep infection frequency than less invasive direct lateral approach in primary total hip arthroplasty. J Surg Orthop Adv. 2018;27:21–4. Graves SC, Dropkin BM, Keeney BJ, Lurie JD, Tomek IM. Does surgical approach affect patient-reported function after primary THA? Clin Orthop Relat Res. 2016;474:971–81. Bernard J, Razanabola F, Beldame J, et al. Electromyographic study of hip muscles involved in total hip arthroplasty: surprising results using the direct anterior minimally invasive approach. Orthop Traumatol Surg Res. 2018. [Epub ahead of print]. Higgins BT, Barlow DR, Heagerty NE, Lin TJ. Anterior vs. posterior approach for total hip arthroplasty, a systematic review and meta-analysis. J Arthroplast. 2015;30:419–34. Post ZD, Orozco F, Diaz-Ledezma C, Hozack WJ, Ong A. Direct anterior approach for total hip arthroplasty: indications, technique, and results. J Am Acad Orthop Surg. 2014;22:595–603. Stone A, Sibia U, Atkinson R, Turner T, King P. Evaluation of the learning curve when transitioning from posterolateral to direct anterior hip arthroplasty: a consecutive series of 1000 cases. J Arthroplast. 2018; [epub ahead of print] Ponzio D, Poultsides L, Salvatore A, Lee Y, Memtsoudis S, Alexiades M. In-hospital morbidity and postoperative revisions after direct anterior vs posterior total hip arthroplasty. J Arthroplast. 2018;33:1421–5. Miller LE, Gondusky JS, Bhattacharyya S, Kamath AF, Boettner F, Wright J. Does surgical approach affect outcomes in total hip arthroplasty through 90 days of follow-up? A systematic review with meta-analysis. J Arthroplast. 2018;33:1296–302. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:b2700. Barrett WP, Turner SE, Leopold JP. Prospective randomized study of direct anterior vs postero-lateral approach for total hip arthroplasty. J Arthroplast. 2013;28:1634–8. Bergin PF, Doppelt JD, Kephart CJ, et al. Comparison of minimally invasive direct anterior versus posterior total hip arthroplasty based on inflammation and muscle damage markers. J Bone Joint Surg Am. 2011;93:1392–8. Christensen CP, Jacobs CA. Comparison of patient function during the first six weeks after direct anterior or posterior total hip arthroplasty (THA): a randomized study. J Arthroplast. 2015;30:94–7. Rodriguez JA, Deshmukh AJ, Rathod PA, et al. Does the direct anterior approach in THA offer faster rehabilitation and comparable safety to the posterior approach? Clin Orthop Relat Res. 2014;472:455–63. Taunton MJ, Mason JB, Odum SM, Springer BD. Direct anterior total hip arthroplasty yields more rapid voluntary cessation of all walking aids: a prospective, randomized clinical trial. J Arthroplast. 2014;29:169–72. Cheng TE, Wallis JA, Taylor NF, et al. A prospective randomized clinical trial in total hip arthroplasty-comparing early results between the direct anterior approach and the posterior approach. J Arthroplast. 2017;32:883–90. Zhang XL, Wang Q, Jiang Y, Zeng BF. Minimally invasive total hip arthroplasty with anterior incision. Zhonghua Wai Ke Za Zhi. 2006;44:512–5. Zhao HY, Kang PD, Xia YY, Shi XJ, Nie Y, Pei FX. Comparison of early functional recovery after total hip arthroplasty using a direct anterior or posterolateral approach: a randomized controlled trial. J Arthroplast. 2017;32:3421–8. Zhang Z, Wang C, Yang P, Dang X, Wang K. Comparison of early rehabilitation effects of total hip arthroplasty with direct anterior approach versus posterior approach. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2018;32:329–33. Putananon C, Tuchinda H, Arirachakaran A, Wongsak S, Narinsorasak T, Kongtharvonskul J. Comparison of direct anterior, lateral, posterior and posterior-2 approaches in total hip arthroplasty: network meta-analysis. Eur J Orthop Surg Traumatol. 2018;28:255–67. Mjaaland KE, Svenningsen S, Fenstad AM, Havelin LI, Furnes O, Nordsletten L. Implant survival after minimally invasive anterior or anterolateral vs. conventional posterior or direct lateral approach: an analysis of 21,860 Total hip arthroplasties from the Norwegian Arthroplasty Register (2008 to 2013). J Bone Joint Surg Am. 2017;99:840–7.