A synthetic approach to weathering degree classification of stone relics case study of the Yungang Grottoes
Tóm tắt
Classification of the weathering degree of large outdoor stone relics has long been a challenge in their protection engineering. An approach to classifying the weathering levels of the Yungang Grottoes is presented in this paper. This approach is based on combined terahertz (THz) spectra and ultrasonic velocity and the use of a least squares support vector machine (LS-SVM). A regression model for prediction of the weathering level was established using the optimal values of parameters determined by the double cross-validation (D-CV) method. This SVM regression prediction model (SVMRPM) predicts the weathering levels of the grottoes with relative errors of 8.16% or less. The SVMRPM can also be used to predict the weathering levels of some areas where ultrasonic testing is extremely difficult; the THz spectra can easily be obtained using approximately 0.2 g of sample material. This method is a highly efficient and economical technique for determining the degree of weathering of large exposed stone relics.
Tài liệu tham khảo
Liu RZ, Zhang BJ, Zhang H, Shi MF. Deterioration of Yungang Grottoes: diagnosis and research. J Cult Heritage. 2011;12(4):494–9.
Egartner I, Schnepfleitner H, Sass O. Influence of salt and moisture on weathering of historic stonework in a continental-humid, urban region. Eng Geol Soc Territ. 2015;8:569–75.
Arikan F, Ulusay R, Aydin N. Characterization of weathering acidic volcanic rocks and a weathering classification based on a rating system. Bull Eng Geol Environ. 2007;66(4):415–30.
Basu A. Applicability of weathering classification to quartzitic materials and relation between mechanical properties and assigned weathering grades: a comparison with investigations on granitic materials. Bull Eng Geol Environ. 2015;6:865–8.
Ceryan S, Tudes S, Ceryan N. A new quantitative weathering classification for igneous rocks. Environ Geol. 2008;55(6):1319–36.
Fehmi A, Resat U, Nihal A. Characterization of weathered acidic volcanic rocks and a weathering classification based on a rating system. Bull Eng Geol Environ. 2007;66(4):415–30.
Gokceoglu C, Zorlu K, Ceryan S, Nefeslioglu HA. A comparative study on indirect determination of degree of weathering of granites from some physical and strength parameters by two soft computing techniques. J Mater Charact. 2009;60(11):1317–27.
Hu R, Oyediran IA, Gao W, Zhang XY, Li LH. “Plagioclase solution degree index”: a new index to evaluate the weathering degree of granite. Bull Eng Geol Environ. 2014;73(2):589–94.
Köhler W. Untersuchungen zu Verwitterungsvorgängen an Carrara-Marrnor in Potsdam-Sanssouci. Berichte zu Forschung und Praxis der Denkmalpflege in Deutschland. Steinschäden-Steinkonservierung. 1991;2:50–3.
Siegesmund S, Weiss T, Vollbrecht A. Natural stone, weathering phenomena, conservation strategies and case studies: introduction. Geol Soc Spec Publ. 2002;205:51–64.
Weiss T, Rasolofosaon PNJ, Siegesmund S. Ultrosonic wave velocities as a diagnostic tool for the quality assessment of marble. Geol Soc Spec Publ. 2002;205:149–64.
Marszałek M, Alexandrowicz Z, Rzepa G. Erratum to: composition of weathering crusts on sandstones from natural outcrops and architectonic elements in an urban environment. Environ Sci Pollut R. 2015;22(6):4786–7.
Matula M. Rock and soil descriptions for engineering geological mapping report by the IAEG commission on engineering geological mapping. Bull Inter Assoc Eng Geol. 1981. https://doi.org/10.1007/bf02595272.
Anand S, Gupta K, Seshagiri R. Weathering indices and their applicability for crystalline rocks. Bull Eng Geol Environ. 2001;60(3):201–21.
Siegesmund S, Weiss T, Ruedrich J. Using ultrasonic diagnosis to monitor damage: the Marble Palace in Potsdam as an example. Restauro. 2004;110(2):98–105.
Siedel H, Siegesmund S. Stone in architecture. 5th ed. London: Springer; 2014.
Ferguson B, Zhang XC. Materials for terahertz science and technology. Nat Mater. 2002;1(1):26–33.
Manceau JM, Nevin A, Fotakis C, Tzortzakis S. Terahertz time domain spectroscopy for the analysis of cultural heritage related materials. Appl Phys B. 2008;90(3):365–8.
Ueno Y, Ajito K. Analytical terahertz spectroscopy. Anal Sci. 2008;24(2):185–92.
Tonouchi M. Cutting-edge terahertz technology. Nat Photonics. 2007;1:97–105.
Vapnik VN. The nature of statistical learning theory. 1st ed. New York: Springer; 1995.
Chang CC, Lin CJ. LIBSVM—a library for support vector machines. ACM transactions on intelligent system and technology. http://www.csie.ntu.edu.tw/~cjlin/libsvm. Accessed 15 Jan 2012.
Suykens JAK, Gestel TV, Brahanter JD, Moor BD, Vandewalle J. Least squares support vector machines. Singapore: World Scientific Publishing Company; 2002.
Hu Y, Huang P, Guo LT, Wang XH, Zhang CL. Terahertz spectroscopic investigations of explosives. Phys Lett A. 2006;359(6):728–32.
Dorney TD, Baraniu K, Mittleman DM. Material parameter estimation with terahertz time-domain spectroscopy. J Opt Soc Am A. 2001;18(7):1562.
Duvillaret L, Garet F, Coutaz JL. Highly precise determination of optical constants and sample thickness in terahertz time- domain spectroscopy. Appl Opt. 1999;38(2):409–15.
Dégardin K, Guillemaina A, Guerreirob NY, Roggo Y. Near infrared spectroscopy for counterfeit detection using a large database of pharmaceutical tablets. J Pharmacol Biomchem Anal. 2016;128:89–97.
Li CH, Ho HH, Liu YL, Lin CT, Kuo BC, Taur JS. An automatic method for selecting the parameter of the normalized kernel function to support vector machines. J Inf Sci Eng. 2012;28(1):1–15.