A study of the antioxidative behavior of phenolic acids, in aqueous herb extracts, using a dsDNA biosensor

Central European Journal of Chemistry - Tập 10 - Trang 1280-1289 - 2012
Elina Skeva1, Stella Girousi1
1Analytical Chemistry Laboratory, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece

Tóm tắt

Electrochemical DNA biosensors are promising tools for the fast, inexpensive and simple in vitro analysis for the determination of free radicals and antioxidants. High concentrations of antioxidants in such compounds as phenolic acids and plant extracts, act as free radical terminators which reduce the effect of the oxidative dam-age on DNA. The electrochemical behavior of three representative phenolic acids, caffeic acid, gallic acid and trolox were studied by cyclic voltammetry. Moreover, the determination of the above antioxidants under the optimized conditions (scan rate, deposition potential and time) using differential pulse voltammetry was also investigated. In vitro studies focused on their antioxidative effect were performed by adsorptive transfer stripping voltammetry and dsDNA biosensor. Using Fenton’s system, with FeSO4 and H2O2 was chosen as a strong oxidative system. This biosensor was applied as a screening antioxidant test in order to estimate the antioxidant capacity of aqueous herb extracts.

Tài liệu tham khảo

B. Halliwell, Biochem. Pharmacol. 49, 1341 (1995) M. Antolovich, P.D. Prenzler, E. Patsalides, S. Mcdonald, K. Robards, Analyst 127, 183 (2002) C. Manach, A. Scalbert, A. Morand, A. Rémésy, L. Jimenez, Am. J. Clin. Nutr. 79, 727 (2004) A. Escarpa, M.C. Gonzalez, Critical Rev. Anal. Chem. 31, 57 (2001) J.B. Harborne, In: P.M. Dey, J.B. Harborne (Eds.), Methods in plant biochemistry, (Academic Press, London, 1989) 1–27 M.N. Clifford, J. Sci. Food Agric. 79, 362 (1999) C.A. Rice-Evans, N.J. Miller, G. Paganga, Free Rad. Biol. Med. 20, 933 (1996) R.G. Robbins, J. Agric. Food Chem. 51, 2866 (2003) E. Niki, Free Rad. Biol. Med. 49, 503 (2010) S. Knasmuller, A. Nersesyan, M. Misik, C. Gerner, W. Mikulits, V. Ehrlich, C. Hoelzl, A. Szakmary, K. Wagner, Br. J. Nutr. 99, ES3 (2008) A. Karadag, B. Ozcelik, S. Saner, Food Anal. Methods 2, 41 (2009) S. Chanda, R. Dave, Af. J. Microb. Res. 3, 981 (2009) R.L. Prior, X. Wu, K. Schaich, J. Agric. Food Chem. 53, 4290 (2005) M. Plessi, D. Bertelli, F. Miglietta, J. Food Compos. Anal. 19, 49 (2006) K. Zhang, Y. Zuo, J. Agric. Food Chem. 52, 222 (2004) V. Roginsky, E.A. Lissi, Food Chem. 92, 235 (2005) L.D. Mello, L.T. Kubota, Talanta 72, 335 (2007) B. Prieto-Simon, M. Cortina, M. Campas, C. Calas-Blanchard, Sens. Act. B, 129, 459 (2008) M.F. Barroso, N. de-los-Santos-Álvarez, M.J. Lobo-Castanón, A.J. Miranda-Ordieres, C. Delerue-Matos, M.B.P.P. Oliveira, P. Tunón-Blanco, Biosens. Bioelectron. 26, 2396 (2011) J.F. Liu, C. Roussel, G. Lagger, P. Tacchini, H.H. Girault, Anal. Chem. 77, 7687(2005) L. Heilerova, M. Buckova, P. Tarapcik, S. Silhar, J. Labuda, Czech J. Food Sci. 21, 77 (2003) L.D. Mello, S. Hernandez, G. Marrazza, M. Mascini, L.T. Kubota, Biosens. Bioelectron. 21, 1374 (2006) P.A. Kilmartin, H. Zou, A.L. Waterhouse, J. Agric. Food Chem. 49, 1957 (2011) J.F. Rusling, Biosens. Bioelectron. 20, 1022 (2004) P. Qian, S. Ai, H. Yin, J. Li, Microchim Acta 168, 347 (2010) M. Barroso, N. de-los-Santos-Alvarez, C. Delerue-Matos, M.B.P. Oliveira, Biosensors and Bioelectronics 30(1), 1 (2011) Z. Stanic, S. Girousi, Talanta 76, 116 (2008) J. Malyszko, M. Karbarz, Journal of Electroanalytical Chemistry 595, 136 (2006) K.E. Yakovleva, S.A. Kurzeev, E.V. Stepanova, T.V. Fedorova, B.A. Kuznetsov, O.V. Koroleva, Applied Biochemistry and Microbiology 43(6), 661 (2007) H. Sies, Strategies of antioxidant defense, Eur. J. Biochem. 215, 213 (1993) E. Palecek, M. Bartosik, Chemical reviews, in press dx.doi.org/10.1021/cr200303p S.A. Ordoudi, M.Z. Tsimidou, J. Agric. Food Chem. 54, 9347 (2006) I. Gülcin, Toxicology 217, 213 (2006) D.O. Kim, K.W. Lee, H.J. Lee, C.Y. Lee, J. Agric. Food Chem. 50, 3713 (2002)