A study of summable QTAG-modules

Fahad Sikander1, Firdhousi Begam2, Tanveer Fatima3
1Department of Basic Sciences, College of Science and Theoretical Studies, Saudi Electronic University, Jeddah Branch, Kingdom of Saudi Arabia
2Applied Science Section, University Polytechnic, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
3Department of Mathematics and Statistics, College of Sciences, Taibah University, Yanbu, Kingdom of Saudi Arabia

Tóm tắt

AbstractThis manuscript deals with the quasi-isomorphic invariants for QTAG modules; specially the cases when the module is summable, $$\sigma $$ σ -summable, $$(\omega +n)$$ ( ω + n ) -projective or HT -module. We show that if for a QTAG module M with a submodule N such that M/N is bounded, then M is weakly $$\omega _1$$ ω 1 -separable if and only if N is weakly $$\omega _1$$ ω 1 -separable.

Từ khóa


Tài liệu tham khảo

Hasan A (2012) Some characterizations of $$QTAG$$-modules. Ph.D. Thesis, A.M.U., Aligarh

Mehdi A, Mehdi F (2002) $$N$$-high submodules and $$h$$-topology, South East Asian. J. Math. Math. Sci. 1(1):83–88

Mehdi A, Abbasi MY, Mehdi F (2006) $$U$$-decomposable modules. J Rajasthan Acad Phys Sci 5(1):13–18

Mehdi A, Abbasi MY, Mehdi F (2006) On ($$\omega $$+n)-projective modules. Ganita Sandesh 20(1):27–32

Mehdi A, Abbasi MY (2008) On upper basic and congruent submodules of $$QTAG$$-modules. Sci Ser A 16:96–104

Mehdi A, Hasan A, Sikander F (2014) On HT-modules. GAMS J Math Math Bio-Sci 5(1):12–18

Mehdi F, Abbasi MY, Sirohi A (2006) On quasi isomorphic $$QTAG$$-modules. J Raj Acad Phys Sci 5(2):153–158

Sikander F (2012) Different characterizations of some submodules of $$QTAG$$-modules. Ph.D. Thesis, A.M.U., Aligarh

Khan MZ (1979) $$h$$-divisible and basic submodules. Tamkang J Math 10(2):197–203

Danchev PV (2008) On some fully invariant subgroups of summable groups. Ann Math Blaise Pascal (2) 15:147–152

Singh S (1976) Some decomposition theorems in abelian groups and their generalizations. Ring Theory, Proc. of Ohio Univ. Conf. Marcel Dekker N.Y. 25:183–189

Singh S (1987) Abelian groups like modules. Act Math Hung 50(2):85–95