A study of polymerase chain reaction device control via cloud using Firebase Cloud Messaging protocol
Tóm tắt
In this paper, we propose a system for data monitoring and control of polymerase chain reaction (PCR) externally. PCR is a technique for amplifying a desired DNA molecule by repeatedly synthesizing a specific part of DNA sequence. Currently, commercially available systems are standalone systems or operate PCR devices through a computer in the vicinity of devices for control purposes. These systems are limited in the number of devices that the host system can monitor at the same time, and there are limitations in controlling devices or accessing experimental data externally. Therefore, we propose a system to control the PCR device via the cloud for the convenience of the user and to overcome the limitation of the place. The cloud system used in this study is Google’s Firebase. At this time, we use Firebase Cloud Messaging (FCM) protocol to send and receive data. In this paper, we have experimented on the possibility of data transmission and reception using FCM between device, cloud and user. Since the PCR chips used in the research are generally operated at about 10°/s, and the temperature can be controlled within 0.5°, the processing period of the control process should be made much smaller than 1/20 s (50 ms). As a result of experiments, the time of the data round-trip using FCM was measured at 150 ms on the average. Therefore, the data exchange time using FCM is three times slower than the reference time of 50 ms. Since the data round-trip time using FCM is measured to be three times slower than the reference time of 50 ms, it is impossible for the user to control the device such as the PCR device used in this study through the cloud. However, it is possible for the user to monitor the status of the PCR device from the outside in real time.
Từ khóa
Tài liệu tham khảo
Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol. 1986;51:263–73.
Newton CR, Graham A, Ellison JS. PcR. Oxford: BIOS Scientific Publishers; 1997.
El-Ali J, Perch-Nielsen IR, Poulsen CR, Bang DD, Telleman P, Wolff A. Simulation and experimental validation of a SU-8 based PCR thermocycler chip with integrated heaters and temperature sensor. Sens Actuators A Phys. 2004;110:3–10.
Koo C, Malapi-Wight M, Kim HS, Cifci OS, Vaughn-Diaz VL, Ma B, Kim S, Abdel-Raziq H, Ong K, Jo Y-K. Development of a real-time microchip PCR system for portable plant disease diagnosis. PLoS ONE. 2013;8:e82704.
Claas EC, Schilham MW, De Brouwer CS, Hubacek P, Echavarria M, Lankester AC, Van Tol MJ, Kroes AC. Internally controlled real-time PCR monitoring of adenovirus DNA load in serum or plasma of transplant recipients. J Clin Microbiol. 2005;43:1738–44.
Yeon J, Kim J-D, Kim Y-S, Song H-J, Park C-Y. Development of PCR control software for smartphone using both wired and wireless communications. Int J Control Automation. 2014;7:11–20.
Park C-Y, Kim J-D, Kim Y-S, Song H-J, Kim J-M, Kim J. Cost reduction of PCR thermal cycler. Int J Multimedia Ubiquitous Eng. 2012;7:389–94.
Zhang Q, Cheng L, Boutaba R. Cloud computing: state-of-the-art and research challenges. J Internet Serv Appl. 2010;1:7–18.
Ku J-H, Kim J-D, Lim H-J, Kim J. PCB based PCR chip system. J Korean Inst Inf Technol. 2011;9:7–16.
Schatz MC, Langmead B, Salzberg SL. Cloud computing and the DNA data race. Nat Biotechnol. 2010;28:691–3.
Lee S-Y, Kim J-D, Song H-J, Kim Y-S, Park C-Y. A feasibility study of PCR control using cloud computing. AST 2017;143:102–105.
Higuchi R, Fockler C, Dollinger G, Watson R. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Nat Biotechnol. 1993;11:1026–30.
Benett WJ, Richards JB. PCR thermocycler. Google Patents; 2003.