Yếu tố phần tử hữu hạn chuyên ngành để mô phỏng vật liệu bán giòn tự phục hồi

Springer Science and Business Media LLC - Tập 7 - Trang 1-24 - 2020
Brubeck L. Freeman1, Pedro Bonilla-Villalba1, Iulia C. Mihai1, Waled F. Alnaas2, Anthony D. Jefferson3
1School of Engineering, Cardiff University, Cardiff, UK
2Elmergib University, Alkhoms, Libya
3School of Engineering - Cardiff University, Cardiff, UK

Tóm tắt

Bài báo giới thiệu một yếu tố phần tử hữu hạn chuyên ngành mới để mô phỏng hành vi nứt và phục hồi của vật liệu bán giòn. Yếu tố này sử dụng phương pháp gián đoạn mạnh để đại diện cho những bước nhảy dịch chuyển liên quan đến các vết nứt. Một đặc điểm nổi bật của công trình này là việc đưa vào khái niệm phục hồi trong công thức của yếu tố. Các biến phục hồi được đưa vào ở cấp yếu tố, điều này đảm bảo tính nhất quán với các bậc tự do nội bộ đại diện cho vết nứt; cụ thể là độ mở vết nứt, trượt vết nứt và xoay. Trong nghiên cứu này, yếu tố được kết hợp với một mô hình vùng kết dính mới để mô phỏng hành vi hư hỏng-phục hồi và được triển khai với một thuật toán theo dõi vết nứt. Để chứng minh hiệu suất của yếu tố mới và các mô hình cấu thành, bài báo trình bày một bài kiểm tra hội tụ và hai ví dụ xác thực liên quan đến phản ứng của một hệ thống vật liệu xi măng tự phục hồi có mạch máu cho ba mẫu khác nhau. Các ví dụ cho thấy mô hình có khả năng chính xác nắm bắt hành vi nứt và phục hồi của loại hệ thống vật liệu tự phục hồi này với độ chính xác tốt.

Từ khóa

#vật liệu bán giòn #mô phỏng #phục hồi #phần tử hữu hạn #hành vi nứt

Tài liệu tham khảo

Baroghel-Bouny V, Nguyen TQ, Dangla P. Assessment and prediction of RC structure service life by means of durability indicators and physical/chemical models. Cement Concr Compos. 2009;31:522–34. Schimmel EC, Remmers J. Development of a constitutive model for self-healing materials. Delft Aerospace Computational Science, Report DACS-06-003 2006. Remmers J, de Borst R. Numerical modelling of self-healing mechanisms. In Self Healing Materials Springer. 2008. 365-380. Abu Al-Rub R, Darabi MK, Little DN, Masad EA. A micro-damage healing model that improves the prediction of fatigue life in asphalt mixes. Int J Eng Sci. 2010;48:966–90. Voyiadjis GZ, Shojaei A, Li G. A thermodynamic consistent damage and healing model for self healing materials. Int J Plast. 2011;27:1025–44. Huang H, Ye G. Simulation of self-healing by further hydration in cementitious materials. Cement Concr Compos. 2012;34:460–7. Mergheim J, Steinmann P. Phenomenological modelling of self-healing polymers based on integrated healing agents. Comput Mech. 2013;52:681–92. Aliko-Benitez A, Doblare M, Sanz-Herrera JA. Chemical-diffusive modeling of the self-healing behaviour in concrete. Int J Solids Struct. 2015;69–70:392–402. Chitez AS, Jefferson AD. A coupled thermo-hygro-chemical model for characterising autogenous healing in ordinary cementitious materials. Cem Concr Res. 2016;88:184–97. Caggiano A, Etse G, Ferrara L, Krelani V. Zero-thickness interface constitutive theory for concrete self-healing effects. Comput Struct. 2017;186:22–34. Davies R, Jefferson AD. Micromechanical modelling of self-healing cementitious materials. Int J Solids Struct. 2017;113–114:180–91. Gilabert FA, Garoz D, Van Paepegem W. Macro- and micro-modeling of crack propagation in encapsulation-based self-healing materials: application of xfem and cohesive surface techniques. Mater Des. 2017;130:459–78. Zhou S, Zhu H, Ju JW, Yan Z, Chen Q. Modeling microcapsule-enabled self-healing cementitious composite materials using discrete element method. Int J Damage Mech. 2017;26:340–57. Di Luzio G, Ferrara L, Krelani V. Numerical modeling of mechanical regain due to self-healing in cement based composites. Cement Concr Compos. 2018;86:190–205. Oucif C, Voyiadjis GZ, Rabczuk T. Modeling of damage-healing and nonlinear self-healing concrete behaviour: application to coupled and uncoupled self-healing mechanisms. Theoret Appl Fract Mech. 2018;96:216–30. Ponnusami SA, Krishnasamy J, Turteltaub S, van der Zwaag S. A cohesive-zone crack healing model for self-healing materials. Int J Solids Struct. 2018;134:249–63. Zhang Y, Zhuang X. A softening-healing law for self-healing quasi-brittle materials: analysing with strong discontinuity embedded approach. Eng Fract Mech. 2018;192:290–306. Sanz-Herrera JA, Aliko-Benitez A, Fadrique-Contreras AM. Numerical investigation of the coupled mechanical behaviour of self-healing materials under cyclic loading. Int J Solids Struct. 2019;160:232–46. Freeman BL, Jefferson AD. The simulation of transport processes in cementitious materials with embedded healing systems. Int J Numer Anal Meth Geomech. 2020;44:293–326. Jefferson AD, Javierre E, Freeman B, Zaoui A, Koenders E, Ferrara L. Research progress on numerical models for self-healing cementitious materials. Adv Mater Interf. 2018;5:1701378. Rots JG. Smeared and discrete representations of localized fracture. Int J Fract. 1991;51(1):45–59. Noghabai K. Discrete versus smeared versus element-embedded crack models on ring problem. J Eng Mech. 1999;125(3):307–15. de Borst R, Remmers JJC, Needleman A, Abellan M-A. Discrete vs smeared crack models for concrete fracture: bridging the gap. Int J Numer Anal Meth Geomech. 2004;28:583–607. Dias-da-Costa D, Cervenka V, Graça-e-Costa R. Model uncertainty in discrete and smeared crack prediction in RC beams under flexural loads. Eng Fract Mech. 2018;199:532–43. Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. Int J Numer Meth Eng. 1999;45:601–20. Moës N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. Int J Numer Meth Eng. 1999;46:131–50. Duarte CAM, Babuška I, Oden JT. Generalized finite element methods for three-dimensional structural mechanics problems. Comput Struct. 2000;77:215–32. Song JH, Areias PMA, Belytschko T. A method for dynamic crack and shear band propagation with phantom nodes. Int J Numer Meth Eng. 2006;67:868–93. Melenk JM, Babuška I. The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng. 1996;139:289–314. Bordas S, Nguyen PV, Dunant C, Guidoum A, Nguyen-Dang H. An extended finite element library. Int J Numer Meth Eng. 2007;71:703–32. Karihallo BL, Xiao QZ. Modelling of stationary and growing cracks in FE framework without remeshing: a state-of-the-art review. Comput Struct. 2003;81:119–29. Fries TP, Belytschko T. The extended/generalized finite element method: an overview of the method and its applications. Int J Numer Meth Eng. 2010;84:253–304. Yu T, Bui TQ. Numerical simulation of 2-D weak and strong discontinuities by a novel approach based on XFEM with local mesh refinement. Comput Struct. 2018;196:112–33. Strouboulis T, Babuška I, Copps K. The design and analysis of the generalized finite element method. Comput Methods Appl Mech Eng. 2000;181:43–69. Strouboulis T, Copps A, Babuška I. The generalized finite element method: an example of its implementation and illustration of its performance. Int J Numer Methods Eng. 2000;47:1401–17. Strouboulis T, Copps K, Babuška I. The generalized finite element method. Comput Methods Appl Mech Eng. 2001;190:4081–193. Babuška I, Caloz G, Osborn JE. Special finite element methods for a class of second order elliptic problems with rough coefficients. SIAM J Numer Anal. 1994;31:745–981. Babuška I, Melenk JM. The partition of unity method. Int J Numer Meth Eng. 1997;40:727–58. Oden JT, Duarte CAM, Zienkiewicz OC. A new cloud-based hp finite element method. Comput Methods Appl Mech Eng. 1998;153:117–26. Belytschko T, Gracie R, Ventura G. A review of extended/generalized finite element methods for material modelling. Modell Simul Mater Sci Eng. 2009;17:043001. Hansbo A, Hansbo P. An unfitted finite element method, based on Nitche’s method, for elliptic interface problems. Comput Methods Appl Mech Eng. 2002;191:5537–52. Hansbo A, Hansbo P. A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput Methods Appl Mech Eng. 2004;193:3523–40. Burman E, Claus S, Hansbo P, Larson MG, Massing A. CutFEM: discretizing geometry and partial differential equations. Int J Numer Meth Eng. 2015;104:472–501. Schott B, Wall WA. A new face-oriented stabilized XFEM approach for 2D and 3D incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng. 2014;276:233–65. Hansbo P, Larson MG, Massing A. A stabilized cut finite element method for the Darcy problem on surfaces. Comput Methods Appl Mech Eng. 2017;326:298–318. Claus S, Kerfriden P. A stable and optimally convergent LaTIn-CutFEM algorithm for multiple unilateral contact problems. Int J Numer Meth Eng. 2017;113:938–66. Burman E, Elfverson D, Hansbo P, Larson MG, Larsson K. Shape optimisation using the cut finite element method. Comput Methods Appl Mech Eng. 2018;328:242–61. Claus S, Kerfriden P. A CutFEM method for two-phase flow problems. Comput Methods Appl Mech Eng. 2019;348:185–206. Alfaiate J, Simone A, Sluys LJ. Non-homogeneous displacement jumps in strong embedded discontinuities. Int J Solids Struct. 2003;40(21):5799–817. https://doi.org/10.1016/S0020-7683(03)00372-X. Oliver J, Huespe AE, Sanchez PJ. A comparative study on finite elements for capturing strong discontinuities: E-FEM vs X-FEM. Comput Methods Appl Mech Eng. 2006;195:4732–52. Ortiz M, Leroy Y, Needleman A. A finite element method for localized failure analysis. Comput Methods Appl Mech Eng. 1987;61:189–214. Dvorkin EN, Cuitino AM, Gioia G. Finite elements with displacement interpolated embedded localization lines insensitive to mesh size and distortions. Int J Numer Meth Eng. 1990;30:541–64. Simo JC, Oliver J, Armero F. An analysis of strong discontinuities induced by strain softening in rate-independent inelastic solids. Comput Mech. 1993;12:277–96. Lotfi HR, Shing PB. Embedded representation of fracture in concrete with mixed finite elements. Int J Numer Meth Eng. 1995;38:1307–25. Oliver J. Modelling strong discontinuities in solid mechanics via strain softening constitutive equations. Part 1: fundamentals. Int J Numer Methods Eng. 1996;39:3575–600. Oliver J. Modelling strong discontinuities in solid mechanics via strain softening constitutive equations. Part 2: numerical simulation. Int J Numer Methods Eng. 1996;39:3601–23. Wells GN, Sluys LJ. Application of embedded discontinuities for softening solids. Eng Fract Mech. 2000;65:263–81. Dias-da-Costa D, Alfaiate J, Sluys LJ, Julio E. A discrete strong discontinuity approach. Eng Fract Mech. 2009;76:1176–201. Dias-da-Costa D, Alfaiate J, Sluys LJ, Julio E. Towards a generalization of a discrete discontinuity approach. Comput Methods Appl Mech Eng. 2009;198:3670–81. Dias-da-Costa D, Alfaiate J, Sluys LJ, Areias P, Julio E. An embedded formulation with conforming finite elements to capture strong discontinuities. Int J Numer Meth Eng. 2013;93:224–44. Linder C, Armero F. Finite elements with embedded branching. Finite Elem Anal Des. 2009;45:280–93. Armero F, Linder C. Numerical simulation of dynamic fracture using finite elements with embedded discontinuities. Int J Fract. 2009;160:119–41. Djuc A, Brank B, Ibrahimbegovic A. Stress-hybrid quadrilateral finite element with embedded strong discontinuity for failure analysis of plane stress solids. Int J Numer Meth Eng. 2013;94:1075–98. Saksala T, Brancherie D, Harari I, Ibrahimbegovic A. Combined continuum damage-embedded discontinuity model for explicit dynamic fracture analyses of quasi-brittle materials. Int J Numer Meth Eng. 2015;101:230–50. Saksala T, Brancherie D, Ibrahimbegovic A. Numerical modeling of dynamic rock fracture with a combined 3D continuum viscodamage-embedded discontinuity model. Int J Numer Anal Meth Geomech. 2016;40:1339–57. Lu M, Zhang H, Zheng Y, Zhang L. A multiscale finite element method with embedded strong discontinuity model for the simulation of cohesive cracks in solids. Comput Methods Appl Mech Eng. 2016;311:576–98. Lu M, Zhang H, Zheng Y, Zhang L. A multiscale finite element method for the localization analysis of homogeneous and heterogeneous saturated porous media with embedded strong discontinuity model. Int J Numer Meth Eng. 2017;112:1439–72. Jirasek M. Comparative study on finite elements with embedded discontinuities. Comput Methods Appl Mech Eng. 2000;188:307–30. Hou TY, Wu XH. A multiscale finite element method for elliptic problems in composite materials and porous media. J Comput Phys. 1997;134(1):169–89. Jefferson AD, Selvarajoo T, Freeman BL, Davies R. An experimental and numerical study on vascular self-healing cementitious materials. MATEC Web Conf. Concrete solutions 2019—7th international conference on concrete repair. 2019. Jefferson AD, Mihai IC, Tenchev R, Alnaas WF, Cole G, Lyons P. A plastic-damage-contact constitutive model for concrete with smoothed evolution functions. Comput Struct. 2016;169:40–56. Gardner D, Jefferson AD, Hoffman A. Investigation of capillary flow in discrete cracks in cementitious materials. Cem Concr Res. 2012;42(7):972–81. https://doi.org/10.1016/j.cemconres.2012.03.017. Gardner D, Jefferson AD, Hoffman A, Lark R. Simulation of the capillary flow of an autonomic healing agent in discrete cracks in cementitious materials. Cem Concr Res. 2014;58:35–44. https://doi.org/10.1016/j.cemconres.2014.01.005. Gardner D, Herbert D, Jayaprakash M, Jefferson AD, Paul A. Capillary flow characteristics of an autogenic and autonomic healing agent for self-healing concrete. J Mater Civ Eng. 2017;29(11):4017228. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002092. Selvarajoo T, Davies RE, Gardner DR, Freeman BL, Jefferson AD. Characterisation of a vascular self-healing cementitious materials system: flow and curing properties. Constr Build Mater. 2020;245:118332. Jiang T-S, Soo-Gun OH, Slattery JC. Correlation for dynamic contact angle. J Colloid Interface Sci. 1979;69(1):74–7. https://doi.org/10.1016/0021-9797(79)90081-X. Comyn J. Moisture cure of adhesives and sealants. Int J Adhes Adhes. 1998;18(4):247–53. https://doi.org/10.1016/S0143-7496(97)00031-6. Li YJ, Barthès-Biesel D, Salsac AV. Polymerization kinetics of n-butyl cyanoacrylate glues used for vascular embolization. J Mech Behav Biomed Mater. 2017;69(January):307–17. https://doi.org/10.1016/j.jmbbm.2017.01.003. Alfaiate J, Wells GN, Sluys LJ. On the use of embedded discontinuity elements with crack path continuity for mode-I and mixed-mode fracture. Eng Fract Mech. 2002;69(6):661–86. https://doi.org/10.1016/S0013-7944(01)00108-4. Cervera M, Pelà L, Clemente R, Roca P. A crack-tracking technique for localized damage in quasi-brittle materials. Eng Fract Mech. 2010;77:2431–50. Selvarajoo T, Characterisation of a vascular self-healing cementitious material system (PhD thesis), Cardiff University, UK, 2019. Selvarajoo T, Davies RE, Freeman BL, Jefferson AD. Mechanical response of a vascular self-healing cementitious material system under varying loading conditions. Constr Build Mater. 2020;254:119245. Winkler B, Hofstetter G, Niederwanger G. Experimental verification of a constitutive model for concrete cracking. Proc Instit Mech Eng Part L J Mater Design Appl. 2001;215(2):75–86.