A secretion biosensor for monitoring Sec-dependent protein export in Corynebacterium glutamicum

Microbial Cell Factories - Tập 19 - Trang 1-15 - 2020
Doris Dohmen-Olma1, Astrid Bida1, Janko Potzkei2, Georg Schaumann2, Roland Freudl3,1, Britta Kleine1, Sarah Jurischka3,1, Stephan Binder2, Patrick J. Bakkes1
1Institut für Bio- und Geowissenschaften 1, IBG1: Biotechnologie, Forschungszentrum Jülich GmbH, Jülich, Germany
2SenseUp GmbH, Jülich, Germany
3Bioeconomy Science Center (BioSC), Jülich, Germany

Tóm tắt

In recent years, the industrial workhorse Corynebacterium glutamicum has gained increasing interest as a host organism for the secretory production of heterologous proteins. Generally, the yield of a target protein in the culture supernatant depends on a multitude of interdependent biological and bioprocess parameters which have to be optimized. So far, the monitoring of such optimization processes depends on the availability of a direct assay for the respective target protein that can be handled also in high throughput approaches. Since simple assays, such as standard enzymatic activity assays, are not always at hand, the availability of a general protein secretion biosensor is highly desirable. High level secretion of proteins via the Sec protein export pathway leads to secretion stress, a phenomenon that is thought to be caused by the accumulation of incompletely or misfolded proteins at the membrane-cell envelope interface. We have analyzed the transcriptional responses of C. glutamicum to the secretory production of two different heterologous proteins and found that, in both cases, the expression of the gene encoding a homologue of the extracytosolic HtrA protease was highly upregulated. Based on this finding, a C. glutamicum Sec secretion biosensor strain was constructed in which the htrA gene on the chromosome was replaced by the eyfp gene. The fluorescence of the resulting reporter strain responded to the secretion of different heterologous proteins (cutinase from Fusarium solani pisi and alkaline phosphatase PhoA from Escherichia coli) in a dose-dependent manner. In addition, three differently efficient signal peptides for the secretory production of the cutinase could be differentiated by the biosensor signal. Furthermore, we have shown that an efficient signal peptide can be separated from a poor signal peptide by using the biosensor signal of the respective cells in fluorescence activated cell sorting experiments. We have succeeded in the construction of a C. glutamicum biosensor strain that allows for the monitoring of Sec-dependent secretion of heterologous proteins in a dose-dependent manner, independent of a direct assay for the desired target protein.

Tài liệu tham khảo

Quax WJ. Merits of secretion of heterologous proteins from industrial microorganisms. Folia Microbiol. 1997;42:99–103. Lee JY, Na YA, Kim ES, Lee HS, Kim P. The actinobacterium Corynebacterium glutamicum, an industrial workhorse. J Microbiol Biotechnol. 2016;26:807–22. Becker J, Gießelmann G, Hoffmann SL, Wittmann C. Corynebacterium glutamicum for sustainable bioproduction: from metabolic physiology to systems metabolic engineering. Adv Biochem Eng Biotechnol. 2018;162:217–64. Freudl R. Beyond amino acids: use of the Corynebacterium glutamicum cell factory for the secretion of heterologous proteins. J Biotechnol. 2017;258:101–9. Vertès AA. Protein secretion systems of Corynebacterium glutamicum. In: Yukawa H, Inui M, editors. Corynebacterium glutamicum. Biology and biotechnology, vol. 23. Heidelberg: Springer; 2013. p. 351–89. Freudl R. Leaving home ain’t easy: protein export systems in Gram-positive bacteria. Res Microbiol. 2013;164:664–74. Rusch SL, Kendall DA. Interactions that drive Sec-dependent bacterial protein transport. Biochemistry. 2007;46:9665–73. Denks K, Vogt A, Sacchelaru I, Petriman NA, Kudva R, Koch HG. The Sec translocon mediated protein transport in prokaryotes and eukaryotes. Mol Membr Biol. 2014;31:58–84. Dalbey RE, Wang P, van Dijl JM. Membrane proteases in the bacterial protein secretion and quality control pathway. Microbiol Mol Biol Rev. 2012;76:311–50. Hemmerich J, Moch M, Jurischka S, Wiechert W, Freudl R, Oldiges M. Combinatorial impact of Sec signal peptides from Bacillus subtilis and bioprocess conditions on heterologous cutinase secretion by Corynebacterium glutamicum. Biotechnol Bioeng. 2019;116:644–55. Brockmeier U, Caspers M, Freudl R, Jockwer A, Noll T, Eggert T. Systematic screening of all signal peptides from Bacillus subtilis: a powerful strategy in optimizing heterologous protein secretion in Gram-positive bacteria. J Mol Biol. 2006;362:393–402. Freudl R. Signal peptides for recombinant protein secretion in bacterial expression systems. Microb Cell Fact. 2018;17:52. Rohe P, Venkanna D, Kleine B, Freudl R, Oldiges M. An automated workflow for enhancing microbial bioprocess optimization on a novel microbioreactor platform. Microb Cell Fact. 2012;11:144. Freier L, Hemmerich J, Schöler K, Wiechert W, Oldiges M, von Lieres E. Framework for Kriging-based iterative experimental analysis and design: optimization of secretory protein production in Corynebacterium glutamicum. Eng Life Sci. 2016;16:538–49. Raivio TL, Silhavy TJ. Periplasmic stress and ECF sigma factors. Annu Rev Microbiol. 2001;55:591–624. Meltzer M, Hasenbein S, Mamant N, Merdanovic M, Poepsel S, Hauske P, Kaiser M, Huber R, Krojer T, Clausen T, Ehrmann M. Structure, function and regulation of the conserved serine proteases DegP and DegS of Escherichia coli. Res Microbiol. 2009;160:660–6. Hyyryläinen HL, Bolhuis A, Darmon E, Muukkonen L, Koski P, Vitikainen M, Sarvas M, Pragai Z, Bron S, van Dijl JM, Kontinen VP. A novel two-component regulatory system in Bacillus subtilis for the survival of severe secretion stress. Mol Microbiol. 2001;41:1159–72. Westers H, Westers L, Darmon E, van Dijl JM, Quax WJ, Zanen G. The CssRS two-component regulatory system controls a general secretion stress response in Bacillus subtilis. FEBS J. 2006;273:3816–27. Trip H, van der Veek PJ, Renniers TC, Maima R, Sagt CM, Mohrmann L, Kuipers OP. A novel screening system for secretion of heterologous proteins in Bacillus subtilis. Microb Biotechnol. 2011;4:673–82. Kleine B, Chattopadhyay A, Polen T, Pinto D, Mascher T, Bott M, Brocker M, Freudl R. The three-component system EsrISR regulates a cell envelope stress response in Corynebacterium glutamicum. Mol Microbiol. 2017;106:719–41. Yang M, Galizzi A, Henner D. Nucleotide sequence of the amylase gene from Bacillus subtilis. Nucleic Acids Res. 1983;11:237–49. Darmon E, Noone D, Masson A, Bron S, Kuipers OP, Devine KM, van Dijl JM. A novel class of heat and secretion stress-responsive genes is controlled by the autoregulated CssRS two-component system of Bacillus subtilis. J Bacteriol. 2002;184:5661–71. White MJ, He H, Penoske RM, Twining SS, Zahrt TC. PepD participates in the mycobacterial stress response mediated through MprAB and SigE. J Bacteriol. 2010;192:1498–510. Vicente RL, Gullón S, Marín S, Mellado RP. The three Streptomyces lividans HtrA-like proteases involved in the secretion stress response act in a cooperative manner. PLoS ONE. 2016;11:e0168112. Pfeifer-Sancar K, Mentz A, Rückert C, Kalinowski J. Comprehensive analysis of the Corynebacterium glutamicum transcriptome using an improved RNAseq technique. BMC Genomics. 2013;14:888. Samorski M, Müller-Newen G, Büchs J. Quasi-continuous combined scattered light and fluorescence measurements: a novel measurement technique for shaken microtiter plates. Biotechnol Bioeng. 2005;92:61–8. Glick B. Metabolic load and heterologous gene expression. Biotechnol Adv. 1995;13:247–61. Hamed MB, Anné J, Karamanou S, Economou A. Streptomyces protein secretion and its application in biotechnology. FEMS Microbiol Lett. 2018;365:fny250. Götz F, Popp F, Korn E, Schleifer KH. Complete nucleotide sequence of the lipase from Staphylococcus hyicus cloned in Staphylococcus carnosus. Nucleic Acids Res. 1985;13:5895–906. Kouwen TRHM, Nielsen AK, Denham EL, Dubois JYF, Dorenbos R, Rasmussen MD, Quax WJ, Freudl R, van Dijl JM. Contributions of the pre- and pro-regions of a Staphylococcus hyicus lipase to secretion of a heterologous protein by Bacillus subtilis. Appl Environ Microbiol. 2010;76:659–69. Hansen G, Hilgenfeld R. Architecture and regulation of HtrA-family proteins involved in protein quality control and stress response. Cell Mol Life Sci. 2013;70:761–75. Miyoshi A, Poquet I, Azevedo V, Commissaire J, Bermudez-Humaran L, Domakova E, Le Loir Y, Oliveira SC, Gruss A, Langella P. Controlled production of stable heterologous proteins in Lactococcus lactis. Appl Environ Microbiol. 2002;68:3141–6. Cortes-Perez NG, Poquet I, Oliveira M, Gratadoux JJ, Madsen SM, Miyoshi A, Corthier G, Azevedo V, Langella P, Bermudez-Humaran LG. Construction and characterization of a Lactococcus lactis strain deficient in intracellular ClpP and extracellular HtrA proteases. Microbiology. 2006;152:2611–8. Morello E, Bermudez-Hamaran LG, Llull D, Sole V, Miraglio N, Langella P, Poquet I. Lactococcus lactis, an efficient cell factory for recombinant protein production and secretion. J Mol Microbiol Biotechnol. 2008;14:48–58. Sone M, Kishigami S, Yoshihisa T, Ito K. Roles of disulfide bonds in bacterial alkaline phosphatase. J Biol Chem. 1997;272:6174–8. Dutton RJ, Boyd D, Berkmen M, Beckwith J. Bacterial species exhibit diversity in their mechanisms and capacity for protein disulfide bond formation. Proc Natl Acad Sci USA. 2008;105:11933–8. Daniels R, Mellroth P, Bernsel A, Neiers F, Normark S, von Heijne G, Henriques-Normark B. Disulfide bond formation and cysteine exclusion in gram-positive bacteria. J Biol Chem. 2010;285:3300–9. Longhi S, Cambillau C. Structure-activity of cutinase, a small lipolytic enzyme. Biochim Biophys Acta. 1999;1441:185–96. Bertani G. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol. 1951;62:293–300. Menkel E, Thierbach G, Eggeling L, Sahm H. Influence of increased aspartate availability on lysine formation by a recombinant strain of Corynebacterium glutamicum and utilization of fumarate. Appl Environ Microbiol. 1989;55:684–8. Keilhauer C, Eggeling L, Sahm H. Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-livN-ilvC operon. J Bacteriol. 1993;175:5595–603. Kensy F, Zang E, Faulhammer C, Tan RK, Büchs J. Validation of a high-throughput fermentation system based on online monitoring of biomass and fluorescence in continuously shaken microtiter plates. Microb Cell Fact. 2009;8:31. Sambrook J, MacCallum P, Russel D. Molecular cloning. A laboratory manual. 3rd ed. New York: Cold Spring Harbor Laboratory Press; 2001. Binder S, Schendzielorz G, Stäbler N, Krumbach K, Hoffmann K, Bott M, Eggeling L. A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level. Genome Biol. 2012;13:R40. Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene. 1994;145:69–73. van der Rest ME, Lange C, Molenaar D. A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl Microbiol Biotechnol. 1999;52:541–5. Möker N, Brocker M, Schaffer S, Krämer R, Morbach S, Bott M. Deletion of the genes encoding the MtrA–MtrB two-component system of Corynebacterium glutamicum has a strong influence on cell morphology, antibiotics susceptibility and expression of genes involved in osmoprotection. Mol Microbiol. 2004;54:420–38. Brocker M, Schaffer S, Mack C, Bott M. Citrate utilization by Corynebacterium glutamicum is controlled by the CitAB two-component system through positive regulation of the citrate transport genes citH and tctCBA. J Bacteriol. 2009;191:3869–80. Polen T, Wendisch VF. Genomewide expression analysis in amino acid-producing bacteria using DNA microarrays. Appl Biochem Biotechnol. 2004;118:215–32. Meissner D, Vollstedt A, van Dijl JM, Freudl R. Comparative analysis of twin-arginine (Tat)-dependent protein secretion of a heterologous model protein (GFP) in three different Gram-positive bacteria. Appl Microbiol Biotechnol. 2007;76:633–42. Caspers M, Brockmeier U, Degering C, Eggert T, Freudl R. Improvement of Sec-dependent secretion of a heterologous model protein in Bacillus subtilis by saturation mutagenesis of the N-domain of the AmyE signal peptide. Appl Microbiol Biotechnol. 2010;86:1877–85. Darmon E, Dorenbos R, Meens J, Freudl R, Antelmann H, Hecker M, Kuipers OP, Bron S, Quax WJ, Dubois JYF, van Dijl JM. A disulfide bond-containing alkaline phosphatase triggers a BdbC-dependent secretion stress response in Bacillus subtilis. Appl Environ Microbiol. 2006;72:6876–86. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983;166:557–80. Kinoshita S, Udaka S, Shimono M. Studies on amino acid fermentation. Part I. Production of l-glutamic acid by various microorganisms. J Gen Appl Microbiol. 1957;3:193–205. Eikmanns BJ, Thumschmitz N, Eggeling L, Lüdtke KU, Sahm H. Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase. Microbiology. 1994;140:1817–28.