A risk score model based on TGF-β pathway-related genes predicts survival, tumor microenvironment and immunotherapy for liver hepatocellular carcinoma
Tóm tắt
Từ khóa
Tài liệu tham khảo
Sung H, et al. Global Cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49. https://doi.org/10.3322/caac.21660.
Vogel A, et al. Hepatocellular carcinoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2019;30:871–3. https://doi.org/10.1093/annonc/mdy510.
Su TH, Hsu SJ, Kao JH. Paradigm shift in the treatment options of hepatocellular carcinoma. Liver Int. 2021. https://doi.org/10.1111/liv.15052. Epub ahead of print.
Yang JD, et al. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol. 2019;16:589–604. https://doi.org/10.1038/s41575-019-0186-y.
Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet. 2018;391:1301–14. https://doi.org/10.1016/S0140-6736(18)30010-2.
Fabregat I, et al. TGF-beta signalling and liver disease. FEBS J. 2016;283:2219–32. https://doi.org/10.1111/febs.13665.
Tu S, Huang W, Huang C, Luo Z, Yan X. Contextual regulation of TGF-beta signaling in liver Cancer. Cells. 2019;8:1235. https://doi.org/10.3390/cells8101235.
Fabregat I, Caballero-Diaz D. Transforming growth factor-beta-induced cell plasticity in liver fibrosis and Hepatocarcinogenesis. Front Oncol. 2018;8:357. https://doi.org/10.3389/fonc.2018.00357.
Arrese M, et al. TGF-beta and Hepatocellular carcinoma: when a friend becomes an enemy. Curr Protein Pept Sci. 2018;19:1172–9. https://doi.org/10.2174/1389203718666171117112619.
Neuzillet C, et al. Perspectives of TGF-beta inhibition in pancreatic and hepatocellular carcinomas. Oncotarget. 2014;5:78–94. https://doi.org/10.18632/oncotarget.1569.
Katz LH, et al. TGF-beta signaling in liver and gastrointestinal cancers. Cancer Lett. 2016;379:166–72. https://doi.org/10.1016/j.canlet.2016.03.033.
Liberzon A, et al. The molecular signatures database (MSigDB) hallmark gene set collection. Cell systems. 2015;1:417–25. https://doi.org/10.1016/j.cels.2015.12.004.
Cancer Genome Atlas Research Network. Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma. Cell. 2017;169:1327–1341.e1323. https://doi.org/10.1016/j.cell.2017.05.046.
Hoshida Y, et al. Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N Engl J Med. 2008;359:1995–2004. https://doi.org/10.1056/NEJMoa0804525.
Roessler S, et al. A unique metastasis gene signature enables prediction of tumor relapse in early-stage hepatocellular carcinoma patients. Cancer Res. 2010;70:10202–12. https://doi.org/10.1158/0008-5472.Can-10-2607.
Grinchuk OV, et al. Tumor-adjacent tissue co-expression profile analysis reveals pro-oncogenic ribosomal gene signature for prognosis of resectable hepatocellular carcinoma. Mol Oncol. 2018;12:89–113. https://doi.org/10.1002/1878-0261.12153.
Simon N, Friedman J, Hastie T, Tibshirani R. Regularization paths for Cox's proportional hazards model via coordinate descent. J Stat Softw. 2011;39:1–13. https://doi.org/10.18637/jss.v039.i05.
Blanche P, Dartigues JF, Jacqmin-Gadda H. Estimating and comparing time-dependent areas under receiver operating characteristic curves for censored event times with competing risks. Stat Med. 2013;32:5381–97. https://doi.org/10.1002/sim.5958.
Subramanian A, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102:15545–50. https://doi.org/10.1073/pnas.0506580102.
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. https://doi.org/10.1186/s13059-014-0550-8.
Cibulskis K, et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol. 2013;31:213–9. https://doi.org/10.1038/nbt.2514.
Chen B, Khodadoust MS, Liu CL, Newman AM, Alizadeh AA. Profiling Tumor Infiltrating Immune Cells with CIBERSORT. Methods Mol Biol (Clifton, N.J.). 2018;1711:243–59. https://doi.org/10.1007/978-1-4939-7493-1_12.
Yoshihara K, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun. 2013;4:2612. https://doi.org/10.1038/ncomms3612.
Roh W, et al. Integrated molecular analysis of tumor biopsies on sequential CTLA-4 and PD-1 blockade reveals markers of response and resistance. Sci Transl Med. 2017;9:eaah3560. https://doi.org/10.1126/scitranslmed.aah3560.
Yang W, et al. Genomics of drug sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 2013;41:D955–61. https://doi.org/10.1093/nar/gks1111.
Geeleher P, Cox N, Huang RS. pRRophetic: an R package for prediction of clinical chemotherapeutic response from tumor gene expression levels. PLoS One. 2014;9:e107468. https://doi.org/10.1371/journal.pone.0107468.
Rody A, et al. T-cell metagene predicts a favorable prognosis in estrogen receptor-negative and HER2-positive breast cancers. Breast Cancer Res. 2009;11:R15. https://doi.org/10.1186/bcr2234.
Chen J, Gingold JA, Su X. Immunomodulatory TGF-beta signaling in hepatocellular carcinoma. Trends Mol Med. 2019;25:1010–23. https://doi.org/10.1016/j.molmed.2019.06.007.
Yang Y, et al. The role of TGF-beta signaling pathways in Cancer and its potential as a therapeutic target. Evid Based Complement Alternat Med. 2021;2021:6675208. https://doi.org/10.1155/2021/6675208.
Giannelli G, Mazzocca A, Fransvea E, Lahn M, Antonaci S. Inhibiting TGF-beta signaling in hepatocellular carcinoma. Biochim Biophys Acta. 2011;1815:214–23. https://doi.org/10.1016/j.bbcan.2010.11.004.
Gonzalez-Sanchez E, et al. The TGF-beta pathway: a pharmacological target in hepatocellular carcinoma? Cancers (Basel). 2021;13:3248. https://doi.org/10.3390/cancers13133248.
Chen J, et al. Analysis of genomes and transcriptomes of hepatocellular carcinomas identifies mutations and gene expression changes in the transforming growth factor-beta pathway. Gastroenterology. 2018;154:195–210. https://doi.org/10.1053/j.gastro.2017.09.007.
Khemlina G, Ikeda S, Kurzrock R. The biology of hepatocellular carcinoma: implications for genomic and immune therapies. Mol Cancer. 2017;16:149. https://doi.org/10.1186/s12943-017-0712-x.
Long J, et al. Development and validation of a TP53-associated immune prognostic model for hepatocellular carcinoma. EBioMedicine. 2019;42:363–74. https://doi.org/10.1016/j.ebiom.2019.03.022.
Kavanagh E, Joseph B. The hallmarks of CDKN1C (p57, KIP2) in cancer. Biochim Biophys Acta. 2011;1816:50–6. https://doi.org/10.1016/j.bbcan.2011.03.002.
Guo H, et al. Prognostic significance of co-expression of nm23 and p57 protein in hepatocellular carcinoma. Hepatol Res. 2010;40:1107–16. https://doi.org/10.1111/j.1872-034X.2010.00721.x.
Bai Y, et al. Identification of seven-gene hypoxia signature for predicting overall survival of hepatocellular carcinoma. Front Genet. 2021;12:637418. https://doi.org/10.3389/fgene.2021.637418.
Witt AE, et al. Identification of a cancer stem cell-specific function for the histone deacetylases, HDAC1 and HDAC7, in breast and ovarian cancer. Oncogene. 2017;36:1707–20. https://doi.org/10.1038/onc.2016.337.
Ler SY, et al. HDAC1 and HDAC2 independently predict mortality in hepatocellular carcinoma by a competing risk regression model in a southeast Asian population. Oncol Rep. 2015;34:2238–50. https://doi.org/10.3892/or.2015.4263.
Vachher M, Arora K, Burman A, Kumar B. NAMPT, GRN, and SERPINE1 signature as predictor of disease progression and survival in gliomas. J Cell Biochem. 2020;121:3010–23. https://doi.org/10.1002/jcb.29560.
Zhu Z, et al. Comprehensive analysis reveals CTHRC1, SERPINE1, VCAN and UPK1B as the novel prognostic markers in gastric cancer. Transl Cancer Res. 2020;9:4093–110. https://doi.org/10.21037/tcr-20-211.
Mazzoccoli G, et al. ARNTL2 and SERPINE1: potential biomarkers for tumor aggressiveness in colorectal cancer. J Cancer Res Clin Oncol. 2012;138:501–11. https://doi.org/10.1007/s00432-011-1126-6.
Jin Y, Liang ZY, Zhou WX, Zhou L. Expression, clinicopathologic and prognostic significance of plasminogen activator inhibitor 1 in hepatocellular carcinoma. Cancer Biomark. 2020;27:285–93. https://doi.org/10.3233/cbm-190560.
Lin Z, Xu Q, Miao D, Yu F. An inflammatory response-related gene signature can impact the immune status and predict the prognosis of hepatocellular carcinoma. Front Oncol. 2021;11:644416. https://doi.org/10.3389/fonc.2021.644416.
Wu G, et al. High levels of BMP2 promote liver Cancer growth via the activation of myeloid-derived suppressor cells. Front Oncol. 2020;10:194. https://doi.org/10.3389/fonc.2020.00194.