Một bài tổng quan về sự hình thành và phát triển hạt nano kim loại keo do bức xạ

Nanoscale Research Letters - Tập 8 - Trang 1-10 - 2013
Alam Abedini1, Abdul Razak Daud1, Muhammad Azmi Abdul Hamid1, Norinsan Kamil Othman1, Elias Saion2
1School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
2Department of Physics, Faculty of Science, Universiti Putra Malaysia, Selangor, Malaysia

Tóm tắt

Bài tổng quan này trình bày một giới thiệu về việc tổng hợp các hạt nano kim loại bằng phương pháp do bức xạ, đặc biệt là chiếu xạ gamma. Phương pháp này mang lại một số lợi ích so với các phương pháp truyền thống vì nó cung cấp các hạt nano hoàn toàn được khử và tinh khiết cao, không chứa các sản phẩm phụ hay tác nhân khử hóa học, đồng thời có khả năng kiểm soát kích thước và cấu trúc của hạt. Cơ chế hình thành và phát triển các hạt nano kim loại cũng được thảo luận. Sự cạnh tranh giữa quá trình hình thành và quá trình phát triển trong việc hình thành các hạt nano có thể xác định kích thước của các hạt nano, điều này bị ảnh hưởng bởi một số tham số nhất định như lựa chọn dung môi và chất ổn định, tỷ lệ tiền chất so với chất ổn định, pH trong quá trình tổng hợp và liều hấp thụ.

Từ khóa

#hạt nano kim loại #bức xạ gamma #phương pháp tổng hợp #cơ chế hình thành và phát triển #tính chất vật liệu

Tài liệu tham khảo

Petit C, Taleb A, Pileni M: Cobalt nanosized particles organized in a 2D superlattice: synthesis, characterization, and magnetic properties. J Phys Chem B 1999, 103: 1805–1810. 10.1021/jp982755m Wang L, Zhang Z, Han X: In situ experimental mechanics of nanomaterials at the atomic scale. NPG Asia Mater 2013, 5: e40. 10.1038/am.2012.70 Buzea C, Pacheco II, Robbie K: Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2007, 2: MR17-MR71. 10.1116/1.2815690 Turton R: The quantum dot: A journey into the future of microelectronics. New York, NY, USA: Oxford University Press, Inc; 1995. Chen S, Sommers JM: Alkanethiolate-protected copper nanoparticles: spectroscopy, electrochemistry, and solid-state morphological evolution. J Phys Chem B 2001, 105: 8816–8820. 10.1021/jp011280n Burda C, Chen X, Narayanan R, El-Sayed MA: Chemistry and properties of nanocrystals of different shapes. Chem Rev 2005, 105: 1025–1102. 10.1021/cr030063a Toshima N, Yonezawa T: Bimetallic nanoparticles—novel materials for chemical and physical applications. New J Chem 1998, 22: 1179–1201. 10.1039/a805753b Haynes CL, Haes AJ, Van Duyne RP: Nanosphere lithography: synthesis and application of nanoparticles with inherently anisotropic structures and surface chemistry. In Materials Research Society Symposium Proceedings. 635th edition. Cambridge: Cambridge Univ Press; 2001:C631-C636. Marques-Hueso J, Abargues R, Canet-Ferrer J, Valdes J, Martinez-Pastor J: Resist-based silver nanocomposites synthesized by lithographic methods. Microelectron Eng 2010, 87: 1147–1149. 10.1016/j.mee.2009.10.043 Madou MJ: Fundamentals of Microfabrication and Nanotechnology: From MEMS to Bio-MEMS and Bio-Nems: manufacturing techniques and applications. Boca Raton, FL: CRC PressInc; 2011. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R: Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J Chem Soc Chem Commun 1994, 7: 801–802. Rodriguez A, Amiens C, Chaudret B, Casanove M-J, Lecante P, Bradley JS: Synthesis and isolation of cuboctahedral and icosahedral platinum nanoparticles. ligand-dependent structures. Chem Mater 1996, 8: 1978–1986. 10.1021/cm960338l Seifert G: Clusters and Colloids. From Theory to Applications. Z Kristallogr 1995, 210: 816–816. Belloni J: Metal nanocolloids. Curr Opin Colloid. Interface Sci 1996, 1: 184–196. Cushing BL, Kolesnichenko VL, O'Connor CJ: Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev-Columbus 2004, 104: 3893–3946. 10.1021/cr030027b Long NN, Kiem CD, Doanh SC, Nguyet CT, Hang PT, Thien ND, Quynh LM: Synthesis and optical properties of colloidal gold nanoparticles. J Phys Conference Series 2009, 187: 012026. Chen W, Cai W, Zhang L, Wang G, Zhang L: Sonochemical processes and formation of gold nanoparticles within pores of mesoporous silica. J Colloid Interface Sci 2001, 238: 291–295. 10.1006/jcis.2001.7525 Darroudi M, Khorsand Zak A, Muhamad M, Huang N, Hakimi M: Green synthesis of colloidal silver nanoparticles by sonochemical method. Mater Lett 2012, 66: 117–120. 10.1016/j.matlet.2011.08.016 Scaiano JC, Billone P, Gonzalez CM, Marett L, Marin ML, McGilvray KL, Yuan N: Photochemical routes to silver and gold nanoparticles. Pure Appl Chem 2009, 81: 635–647. 10.1351/PAC-CON-08-09-11 Akhavan A, Kalhor H, Kassaee M, Sheikh N, Hassanlou M: Radiation synthesis and characterization of protein stabilized gold nanoparticles. Chem Eng J 2010, 159: 230–235. 10.1016/j.cej.2010.02.010 Kharisov BI, Kharissova OV, Méndez UO: Radiation Synthesis of Materials and Compounds. Boca Raton, FL: CRC Press; 2013. Henglein A: Physicochemical properties of small metal particles in solution: “microelectrode” reactions, chemisorption, composite metal particles, and the atom-to-metal transition. The J Phys Chem 1993, 97: 5457–5471. 10.1021/j100123a004 Henglein A: Electronics of colloidal nanometer particles. Berichte der Bunsen-Gesellschaft 1995, 99: 903–913. Belloni J: Nucleation, growth and properties of nanoclusters studied by radiation chemistry: application to catalysis. Catal Today 2006, 113: 141–156. 10.1016/j.cattod.2005.11.082 Marignier J, Belloni J, Delcourt M, Chevalier J: New microaggregates of non noble metals and alloys prepared by radiation induced reduction. Nature 1985, 317: 344–345. 10.1038/317344a0 Lee K-P, Gopalan AI, Santhosh P, Lee SH, Nho YC: Gamma radiation induced distribution of gold nanoparticles into carbon nanotube-polyaniline composite. Compos Sci Technol 2007, 67: 811–816. 10.1016/j.compscitech.2005.12.030 Seino S, Kinoshita T, Nakagawa T, Kojima T, Taniguci R, Okuda S, Yamamoto TA: Radiation induced synthesis of gold/iron-oxide composite nanoparticles using high-energy electron beam. J Nanopart Res 2008, 10: 1071–1076. 10.1007/s11051-007-9334-3 Karim MR, Lim KT, Lee CJ, Bhuiyan MTI, Kim HJ, Park LS, Lee MS: Synthesis of core‒shell silver–polyaniline nanocomposites by gamma radiolysis method. J Polym Sci Part A: Polym Chem 2007, 45: 5741–5747. 10.1002/pola.22323 Tang X-F, Yang Z-G, Wang W-J: A simple way of preparing high-concentration and high-purity nano copper colloid for conductive ink in inkjet printing technology. Colloids Surf A: Physicochemical and Engineering Aspects 2010, 360: 99–104. 10.1016/j.colsurfa.2010.02.011 Rojas J, Castano C: Production of palladium nanoparticles supported on multiwalled carbon nanotubes by gamma irradiation. Radiat Phys Chem 2012, 81: 16–21. 10.1016/j.radphyschem.2011.08.010 Rao Y, Banerjee D, Datta A, Das S, Guin R, Saha A: Gamma irradiation route to synthesis of highly re-dispersible natural polymer capped silver nanoparticles. Radiat Phys Chem 2010, 79: 1240–1246. 10.1016/j.radphyschem.2010.07.004 Cao G: Nanostructures & nanomaterials: synthesis, properties & applications. London: Imperial College Pr; 2004. Zuo X, Liu H, Guo D, Yang X: Enantioselective hydrogenation of pyruvates over polymer-stabilized and supported platinum nanoclusters. Tetrahedron 1999, 55: 7787–7804. 10.1016/S0040-4020(99)00415-9 Tu W-x, Zuo X-b, Liu H-f: Study on the interaction between polyvinylpyrrolidone and platinum metals during the formation of the colloidal metal nanoparticles. Chin J Polym Sci 2008, 26: 23–29. 10.1142/S0256767908002625 Choi S-H, Zhang Y-P, Gopalan A, Lee K-P, Kang H-D: Preparation of catalytically efficient precious metallic colloids by γ-irradiation and characterization. Colloids Surf A: Physicochemical and Engineering Aspects 2005, 256: 165–170. 10.1016/j.colsurfa.2004.07.022 Misra N, Biswal J, Gupta A, Sainis J, Sabharwal S: Gamma radiation induced synthesis of gold nanoparticles in aqueous polyvinyl pyrrolidone solution and its application for hydrogen peroxide estimation. Radiat Phys Chem 2012, 81: 195–200. 10.1016/j.radphyschem.2011.10.014 Haque K, Hussain M: Synthesis of Nano-sized Nickel Particles by a Bottom-up Approach in the Presence of an Anionic Surfactant and a Cationic Polymer. J Sci Res 2010, 2: 313–321. Torigoe K, Remita H, Beaunier P, Belloni J: Radiation-induced reduction of mixed silver and rhodium ionic aqueous solution. Radiat Phys Chem 2002, 64: 215–222. 10.1016/S0969-806X(01)00453-4 Doudna CM, Bertino MF, Blum FD, Tokuhiro AT, Lahiri-Dey D, Chattopadhyay S, Terry J: Radiolytic synthesis of bimetallic Ag-Pt nanoparticles with a high aspect ratio. J Phys Chem B 2003, 107: 2966–2970. 10.1021/jp0273124 Seino S, Kinoshita T, Otome Y, Maki T, Nakagawa T, Okitsu K, Mizukoshi Y, Nakayama T, Sekino T, Niihara K: γ-ray synthesis of composite nanoparticles of noble metals and magnetic iron oxides. Scripta Mater 2004, 51: 467–472. 10.1016/j.scriptamat.2004.06.003 Gautam A, Tripathy P, Ram S: Microstructure, topology and X-ray diffraction in Ag-metal reinforced polymer of polyvinyl alcohol of thin laminates. J mater Sci 2006, 41: 3007–3016. 10.1007/s10853-006-6768-4 Ulanski P, Bothe E, Rosiak JM, von Sonntag C: OH radical induced crosslinking and strand breakage of poly (vinyl alcohol) in aqueous solution in the absence and presence of oxygen. A pulse radiolysis and product study. Macromol Chem Phys 1994, 195: 1443–1461. 10.1002/macp.1994.021950427 Wang S, Xin H: Fractal and dendritic growth of metallic Ag aggregated from different kinds of γ-irradiated solutions. J Phys Chem B 2000, 104: 5681–5685. 10.1021/jp000225w Keghouche N, Chettibi S, Latrèche F, Bettahar M, Belloni J, Marignier J: Radiation-induced synthesis of α-Al2O3 supported nickel clusters: Characterization and catalytic properties. Radiat Phys Chem 2005, 74: 185–200. 10.1016/j.radphyschem.2005.04.021 Liz-Marzan LM, Kamat PV: Nanoscale materials. Netherlands: Springer Netherlands; 2003. Ferrando R, Jellinek J, Johnston RL: Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 2008, 108: 845–910. 10.1021/cr040090g Abedini A, Larki F, Saion E, Zakaria A, Zobir Hussein M: Influence of dose and ion concentration on formation of binary Al-Ni alloy nanoclusters. Radiat Phys Chem 2012, 81: 1653–1658. 10.1016/j.radphyschem.2012.05.015 Nenoff TM, Zhang Z, Leung K, Stumpf R, Huang J, Lu P, Berry DT, Provencio PP, Hanson D, Robinson D: Room temperature synthesis of Ni-based alloy nanoparticles by radiolysis. In Room Temperature Synthesis of Ni-Based Alloy Nanoparticles by Radiolysis. Livermore: Sandia National Laboratories; 2009. Abedini A, Saion E, Larki F, Zakaria A, Noroozi M, Soltani N: Room temperature radiolytic synthesized Cu@ CuAlO2-Al2O3nanoparticles. Int J Mol Sci 2012, 13: 11941–11953. 10.3390/ijms130911941 J-s C, Y-w J, Yeon S-I, Kim HC, Shin J-S, Cheon J: Biocompatible heterostructured nanoparticles for multimodal biological detection. J Am Chem Soc 2006, 128: 15982–15983. 10.1021/ja066547g Biswal J, Ramnani S, Shirolikar S, Sabharwal S: Seedless synthesis of gold nanorods employing isopropyl radicals generated using gamma radiolysis technique. Int J Nanotechnol 2010, 7: 907–918. 10.1504/IJNT.2010.034697 Mukherjee T: Synthesis and characterization of silver nanoparticles in viscous solvents: A γ-radiolytic study. Int J Chem 2012, 1: 10–15. Liu Q-m, Yasunami T, Kuruda K, Okido M: Preparation of Cu nanoparticles with ascorbic acid by aqueous solution reduction method. Trans Nonferrous Met Soc China 2012, 22: 2198–2203. 10.1016/S1003-6326(11)61449-0 Ramnani S, Biswal J, Sabharwal S: Synthesis of silver nanoparticles supported on silica aerogel using gamma radiolysis. Radiat Phys Chem 2007, 76: 1290–1294. 10.1016/j.radphyschem.2007.02.074 Wu M-L, Chen D-H, Huang T-C: Synthesis of Au/Pd bimetallic nanoparticles in reverse micelles. Langmuir 2001, 17: 3877–3883. 10.1021/la010060y Kassaee M, Akhavan A, Sheikh N, Beteshobabrud R: γ-Ray synthesis of starch-stabilized silver nanoparticles with antibacterial activities. Radiat Phys Chem 2008, 77: 1074–1078. 10.1016/j.radphyschem.2008.06.010 Long D, Wu G, Chen S: Preparation of oligochitosan stabilized silver nanoparticles by gamma irradiation. Radiat Phys Chem 2007, 76: 1126–1131. 10.1016/j.radphyschem.2006.11.001 Zhou F, Zhou R, Hao X, Wu X, Rao W, Chen Y, Gao D: Influences of surfactant (PVA) concentration and pH on the preparation of copper nanoparticles by electron beam irradiation. Radiat Phys Chem 2008, 77: 169–173. 10.1016/j.radphyschem.2007.05.007 Linfeng ZXZRHE, Lihui R: Influence of PVA and PEG on Fe3O4nano-particles prepared by EB irradiation. J Radiat Res Radiat Proces 2005, 6: 325–328. Li T, Park HG, Choi S-H: γ-Irradiation-induced preparation of Ag and Au nanoparticles and their characterizations. Mater Chem Phys 2007, 105: 325–330. 10.1016/j.matchemphys.2007.04.069