Một bài tổng quan về tầm quan trọng của các hợp chất sinh học trong các cây thuốc trong việc điều trị xơ phổi vô căn (nhấn mạnh đặc biệt vào các ancaloit isoquinoline)

Future Journal of Pharmaceutical Sciences - Tập 7 - Trang 1-20 - 2021
Sai Sushma Dudala1, T. C. Venkateswarulu1, Sushma Chandulee Kancharla2, Vidya Prabhakar Kodali3, D. John Babu1
1Department of Biotechnology, Vignan’s Foundation for Science, Technology and Research, Guntur, India
2Department of Pathology, Government Medical College, Ongole, India
3Department of Biotechnology, Vikrama Simhapuri University, Nellore, India

Tóm tắt

Xơ phổi vô căn (IPF) là một bệnh phổi chết người có nguyên nhân không xác định, làm rối loạn cấu trúc và chức năng bình thường của phổi bằng cách điều tiết sai lệch các phản ứng miễn dịch, cuối cùng dẫn đến cái chết của cá nhân. Nhiều yếu tố có thể dẫn đến sự phát triển của bệnh này và hiện tại chưa có phương pháp chữa trị cho bệnh. Có một số loại thuốc tổng hợp có sẵn để làm giảm triệu chứng và làm chậm sự phát triển của bệnh bằng cách nhắm vào các con đường liên quan đến sự phát triển của IPF, nhưng cũng đã phát hiện ra nhiều tác dụng phụ do việc sử dụng chúng. Đã có nhiều thập kỷ nay, cây thuốc và các hợp chất của chúng được sử dụng trên toàn thế giới trong y học tự nhiên để chữa trị nhiều bệnh khác nhau. Bài báo tổng quan này tập trung vào tác động của các hợp chất sinh học tự nhiên từ 26 loại chiết xuất thực vật có tính chất phòng ngừa và điều trị đối với bệnh, và do đó có thể được sử dụng trong việc điều trị IPF để thay thế thuốc tổng hợp và giảm thiểu tác dụng phụ. Bài tổng quan này bao gồm các cơ chế khác nhau gây ra xơ phổi, cùng với những hợp chất có thể kích thích xơ hóa, các loại thuốc dùng để điều trị xơ phổi, chẩn đoán, các xét nghiệm sinh hóa được sử dụng trong nghiên cứu thực nghiệm để xác định bệnh sinh của bệnh với một ghi chú đặc biệt về các ancaloit isoquinoline và vai trò của chúng trong việc giảm các yếu tố khác nhau dẫn đến IPF, từ đó cung cấp một cách tiếp cận điều trị đầy hứa hẹn.

Từ khóa


Tài liệu tham khảo

Takishima T (1994) Basic and clinical aspects of pulmonary fibrosis. CRC Press, Boca Raton, pp 501–502 Higashiyama H, Yoshimoto D, Kaise T, Matsubara S, Fujiwara M, Kikkawa H, Kinoshita M (2007) Inhibition of activin receptor-like kinase 5 attenuates bleomycin-induced pulmonary fibrosis. Exp Mol Pathol 83(1):39–46. https://doi.org/10.1016/j.yexmp.2006.12.003 Hay ED (1991) Collagen and other matrix glycoproteins in embryogenesis. In: Cell biology of extracellular matrix. Springer, Boston, pp 419–462. https://doi.org/10.1007/978-1-4615-3770-0_13 George PM, Patterson CM, Reed AK, Thillai M (2019) Lung transplantation for idiopathic pulmonary fibrosis. Lancet Respir Med 7(3):271–282. https://doi.org/10.1016/S2213-2600(18)30502-2 Kuwano K, Kunitake R, Kawasaki M, Nomoto Y, Hagimoto N, Nakanishi Y, Hara N (1996) P21Waf1/Cip1/Sdi1 and p53 expression in association with DNA strand breaks in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 154(2):477–483. https://doi.org/10.1164/ajrccm.154.2.8756825 Van Wyk BE, Wink M (2004) Medicinal plants of the world. Briza Publications, Pretoria Wynn TA (2011) Integrating mechanisms of pulmonary fibrosis. J Exp Med 208(7):1339–1350. https://doi.org/10.1084/jem.20110551 Gilmore MA (1991) Phases of wound healing. Dimens Oncol Nurs 5(3):32–34 PMID: 1823567 Steenfos HH (1994) Growth factors and wound healing. Scand J Plast Reconstr Surg Hand 28(2):95–105. https://doi.org/10.3109/02844319409071186 Krafts KP (2010) Tissue repair: The hidden drama. Organogenesis 6(4):225–233. https://doi.org/10.4161/org.6.4.12555 Willis BC, duBois RM, Borok Z (2006) Epithelial origin of myofibroblasts during fibrosis in the lung. Proc Am Thorac Soc 3(4):377–382. https://doi.org/10.1513/pats.200601-004TK Li J, Chen J, Kirsner R (2007) Pathophysiology of acute wound healing. Clin Dermatol 25(1):9–18. https://doi.org/10.1016/j.clindermatol.2006.09.007 Guo SA, DiPietro LA (2010) Factors affecting wound healing. J Dent Res 89(3):219–229. https://doi.org/10.1177/0022034509359125 Martinon F (2008) Detection of immune danger signals by NALP3. J Leukoc Biol 83(3):507–511. https://doi.org/10.1189/jlb.0607362 Kolb M, Margetts PJ, Anthony DC, Pitossi F, Gauldie J (2001) Transient expression of IL-1β induces acute lung injury and chronic repair leading to pulmonary fibrosis. J Clin Invest 107(12):1529–1536. https://doi.org/10.1172/JCI12568 Simonian PL, Roark CL, Wehrmann F, Lanham AK, del Valle FD, Born WK, Fontenot AP (2009) Th17-polarized immune response in a murine model of hypersensitivity pneumonitis and lung fibrosis. J Immunol 182(1):657–665. https://doi.org/10.4049/jimmunol.182.1.657 Martinez FO, Gordon S (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 6:13. https://doi.org/10.12703/P6-13 Wynn TA, Barron L (2010) Macrophages: master regulators of inflammation and fibrosis. Semin Liver Dis 30(03):245–257. https://doi.org/10.1055/s-0030-1255354 Song E, Ouyang N, Hörbelt M, Antus B, Wang M, Exton MS (2000) Influence of alternatively and classically activated macrophages on fibrogenic activities of human fibroblasts. Cell Immunol 204(1):19–28. https://doi.org/10.1006/cimm.2000.1687 Hancock A, Armstrong L, Gama R, Millar A (1998) Production of interleukin 13 by alveolar macrophages from normal and fibrotic lung. Am J Respir Cell Mol Biol 18(1):60–65. https://doi.org/10.1165/ajrcmb.18.1.2627 Cui H, Guo S, Banerjee S, Xie N, Liu RM, Thannickal VJ, Liu G (2019) Apolipoprotein E in Recruited Alveolar Macrophages Promotes Lung Fibrosis Resolution. C58. MECHANISMS OF PULMONARY FIBROSIS. Am Thorac Soc 199:5246–5246. https://doi.org/10.1164/ajrccm-conference.2019.199.1_MeetingAbstracts.A5246 Wynn TA, Vannella KM (2016) Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44(3):450–462. https://doi.org/10.1016/j.immuni.2016.02.015 Jakubzick C, Choi ES, Joshi BH, Keane MP, KunkelSL PRK, Hogaboam CM (2003) Therapeutic attenuation of pulmonary fibrosis via targeting of IL-4-and IL-13-responsive cells. J Immunol 171(5):2684–2693. https://doi.org/10.4049/jimmunol.171.5.2684 Kolosowska N, Keuters MH, Wojciechowski S, Keksa-Goldsteine V, Laine M, Malm T, Dhungana H (2019) Peripheral administration of IL-13 induces anti-inflammatory microglial/macrophage responses and provides neuroprotection in ischemic stroke. Neurotherapeutics 16(14):1304–1319. https://doi.org/10.1007/s13311-019-00761-0 Hayashi N, Yoshimoto T, Izuhara K, Matsui K, Tanaka T, Nakanishi K (2007) T helper 1 cells stimulated with ovalbumin and IL-18 induce airway hyperresponsiveness and lung fibrosis by IFN-γ and IL-13 production. Proc Natl Acad Sci 104(37):14765–14770. https://doi.org/10.1073/pnas.0706378104 Konigshoff M, Balsara N, Pfaff EM, Kramer M, Chrobak I, Seeger W, Eickelberg O (2008) Functional Wnt signaling is increased in idiopathic pulmonary fibrosis. PLoS One 3(5):e2142. https://doi.org/10.1371/journal.pone.0002142 Konigshoff M, Kramer M, Balsara N, Wilhelm J, Amarie OV, Jahn A, Günther A (2009) WNT1-inducible signaling protein–1 mediates pulmonary fibrosis in mice and is upregulated in humans with idiopathic pulmonary fibrosis. J Clin Investig 119(4):772–787. https://doi.org/10.1172/JCI33950 Xia H, Diebold D, Nho R, Perlman D, Kleidon J, Kahm J, Henke C (2008) Pathological integrin signaling enhances proliferation of primary lung fibroblasts from patients with idiopathic pulmonary fibrosis. J Exp Med 205(7):1659–1672. https://doi.org/10.1084/jem.20080001 Pandit KV, Corcoran D, Yousef H, Yarlagadda M, Tzouvelekis A, Gibson KF, Richards T (2010) Inhibition and role of let-7d in idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol 182(2):220–229. https://doi.org/10.1164/rccm.200911-1698OC Elewa YHA, Ichii O, Takada K, Nakamura T, Masum M, Kon Y (2018) Histopathological correlations between mediastinal fat-associated lymphoid clusters and the development of lung inflammation and fibrosis following bleomycin administration in mice. Front Immunol 9:271. https://doi.org/10.3389/fimmu.2018.00271 Umezawa H, Ishizuka M, Maeda K, Takeuchi T (1967) Studies on bleomycin. Cancer 20(5):891–895. https://doi.org/10.1002/1097-0142(1967)20:5<891::AID-CNCR2820200550>3.0.CO;2-V Adamson IY (1976) Pulmonary toxicity of bleomycin. Environ Health Perspect 16:119–125. https://doi.org/10.1289/ehp.7616119 Xu Q, Liu Y, Pan H, Xu T, Li Y, Yuan J, Ni C (2019) Aberrant expression of miR-125a-3p promotes fibroblast activation via Fyn/STAT3 pathway during silica-induced pulmonary fibrosis. Toxicology 414:57–67. https://doi.org/10.1016/j.tox.2019.01.007 Bismuth C, Garnier R, Baud FJ, Muszynski J, Keyes C (1990) Paraquat poisoning. Drug Saf 5(4):243–251. https://doi.org/10.2165/00002018-199005040-00002 Cantor JO, Osman M, Cerreta JM, Suarez R, Mandl I, Turino GM (1984) Amiodarone-induced pulmonary fibrosis in hamsters. Exp Lung Res 6(1):1–10. https://doi.org/10.1016/j.rmcr.2019.01.014 Qian P, Hong Peng C, Ye X (2019) Interstitial pneumonia induced by cyclophosphamide: A case report and review of the literature. Respir Med Case Rep 26:212–214. https://doi.org/10.1016/j.rmcr.2019.01.014 Uchida M, Shiraishi H, Ohta S, Arima K, Taniguchi K, Suzuki S, Toda S (2012) Periostin, a matricellular protein, plays a role in the induction of chemokines in pulmonary fibrosis. Am J Respir Cell Mol Biol 46(5):677–686 https://doi.org/10.1165/rcmb.2011-0115OC Paakko P, Sormunen R, Risteli L, Risteli J, Ala-Kokko L, Ryhänen L (1989) Malotilate prevents accumulation of type III pN-collagen, type IV collagen, and laminin in carbon tetrachloride-induced pulmonary fibrosis in rats. Am J Respir Crit Care Med 139(5):1105–1111 https://doi.org/10.1164/ajrccm/139.5.1105 Das M, Boerma M, Goree JR, Lavoie EG, Fausther M, Gubrij IB, Dranoff JA (2014) Pathological changes in pulmonary circulation in carbon tetrachloride (CCl4)-induced cirrhotic mice. PLoS One 9(4):e96043. https://doi.org/10.1371/journal.pone.0096043 Chow LN, Schreiner P, Ng BY, Lo B, Hughes MR, Scott RW, Barta I (2016) Impact of a CXCL12/CXCR4 antagonist in bleomycin (BLM) induced pulmonary fibrosis and carbon tetrachloride (CCL4) induced hepatic fibrosis in mice. PLoS One 11(3):e0151765. https://doi.org/10.1371/journal.pone.0151765 Kim HR, Lee K, Park CW, Song JA, Park YJ, Chung KH (2016) Polyhexamethylene guanidine phosphate aerosol particles induce pulmonary inflammatory and fibrotic responses. Arch Toxicol 90(3):617–632 https://doi.org/10.1007/s00204-015-1486-9 Johnston CJ, Williams JP, Okunief P, Finkelstein JN (2002) Radiation-induced pulmonary fibrosis: examination of chemokine and chemokine receptor families. Radiat Res 157(3):256–265. https://doi.org/10.1667/0033-7587(2002)157[0256:RIPFEO]2.0.CO;2 Le LC, Le MB, Fauroux B, Forenza N, Dommergues JP, Desbois JC, Pin I (2000) Long-term outcome of idiopathic pulmonary hemosiderosis in children. Medicine 79(5):318–326. https://doi.org/10.1097/00005792-200009000-00005 Lynch DA, Godwin JD, Safrin S, Starko KM, Hormel P, Brown KK, Webb WR (2005) High-resolution computed tomography in idiopathic pulmonary fibrosis: diagnosis and prognosis. Am J Respir Crit Care Med 172(4):488–493. https://doi.org/10.1164/rccm.200412-1756OC Murata I, Ito K, Takenaka K, Yoshinoya S, Kikuchi K, Kiuchi T, Tanigawa T (1997) Clinical evaluation of pulmonary hypertension in systemic sclerosis and related disorders: a Doppler echocardiographic study of 135 Japanese patients. Chest 111(1):36–43. https://doi.org/10.1378/chest.111.1.36 D’Andrea A, Stanziola AA, Saggar R, Saggar R, Sperlongano S, Conte M, Bossone E (2019) Right ventricular functional reserve in early-stage idiopathic pulmonary fibrosis: an exercise two-dimensional speckle tracking doppler echocardiography study. Chest 155(2):297–306. https://doi.org/10.1016/j.chest.2018.11.015 Xaubet A, Agusti C, Luburich P, Roca J, Monton C, Ayuso MC, Rodriguez-Roisin R (1998) Pulmonary function tests and CT scan in the management of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 158(2):431–436. https://doi.org/10.1164/ajrccm.158.2.9709008 Bonella F, di Marco F, Spagnolo P (2019) Pulmonary Function Tests in Idiopathic Pulmonary Fibrosis. In: Meyer K, Nathan S (eds) Idiopathic Pulmonary Fibrosis. Respiratory Medicine. Humana Press, Cham, pp 85–95. https://doi.org/10.1007/978-3-319-99975-3_5 Zisman DA, Ross DJ, Belperio JA, Saggar R, Lynch JP III, Ardehali A, Karlamangla AS (2007) Prediction of pulmonary hypertension in idiopathic pulmonary fibrosis. Respir Med 101(10):2153–2159. https://doi.org/10.1016/j.rmed.2007.05.012 Marcus CL, Bader D, Stabile MW, Wang CI, Osher AB, Keens TG (1992) Supplemental oxygen and exercise performance in patients with cystic fibrosis with severe pulmonary disease. Chest 101(1):52–57. https://doi.org/10.1378/chest.101.1.52 Costa CM, Neder JA, Verrastro CG, Paula-Ribeiro M, Ramos R, Ferreira EM, Ota-Arakaki J (2019) Uncovering the mechanisms of exertional dyspnoea in combined pulmonary fibrosis and emphysema. Eur Respir J 55(1):1901319. https://doi.org/10.1183/13993003.01319-2019 Zajaczkowska M, Johnson A, Gallur L, Shin J, Henderson C, Williamson J (2019) Transbronchial lung cryobiopsy: a novel confirmatory tool to diagnose asbestos-related pulmonary fibrosis. Respirol Case Rep 7(1):e00380. https://doi.org/10.1002/rcr2.380 Ravaglia C, Tomassetti S, Poletti V (2019) New idiopathic pulmonary fibrosis guidelines: Are cryobiopsy and surgery competitive in clinical practice? Am J Respir Crit Care Med 199(5):666–667. https://doi.org/10.1164/rccm.201809-1718LE Richeldi L, Davies HRH, Spagnolo P, Luppi F (2003) Corticosteroids for idiopathic pulmonary fibrosis. Cochrane Database Syst Rev (3). https://doi.org/10.1002/14651858.CD002880 Raghu G, Depaso WJ, Cain K, Hammar SP, Wetzel CE, Dreis DF, Winterbauer RH (1991) Azathioprine combined with prednisone in the treatment of idiopathic pulmonary fibrosis: a prospective double-blind, randomized, placebo-controlled clinical trial. Am Rev Respir Dis 144(2):291–296. https://doi.org/10.1164/ajrccm/144.2.291 Raghu G, Brown KK, Costabel U, Cottin V, Du Bois RM, Lasky JA, Fatenejad S (2008) Treatment of idiopathic pulmonary fibrosis with etanercept: an exploratory, placebo-controlled trial. Am J Respir Crit Care Med 178(9):948–955. https://doi.org/10.1164/rccm.200709-1446OC Gurujeyalakshmi G, Giri SN (1995) Molecular mechanisms of antifibrotic effect of interferon gamma in bleomycin-mouse model of lung fibrosis: downregulation of TGF-β and procollagen I and III gene expression. Exp Lung Res 21(5):791–808. https://doi.org/10.3109/01902149509050842 Jackson RM, Glassberg MK, Ramos CF, Bejarano PA, Butrous G, Gómez-Marin O (2010) Sildenafil therapy and exercise tolerance in idiopathic pulmonary fibrosis. Lung 188(2):115–123. https://doi.org/10.1007/s00408-009-9209-8 Corte TJ, Keir GJ, Dimopoulos K, Howard L, Corris PA, Parfitt L, Maher TM (2014) Bosentan in pulmonary hypertension associated with fibrotic idiopathic interstitial pneumonia. Am J Respir Crit Care Med 190(2):208–217. https://doi.org/10.1164/rccm.201403-0446OC Raghu G, Million-Rousseau R, Morganti A, Perchenet L, Behr J (2013) Macitentan for the treatment of idiopathic pulmonary fibrosis: the randomised controlled MUSIC trial. Eur Respir J 42(6):1622–1632. https://doi.org/10.1183/09031936.00104612 Raghu G, Behr J, Brown KK, Egan JJ, Kawut SM, Flaherty KR, Costabel U (2013) Treatment of idiopathic pulmonary fibrosis with ambrisentan. Ann Intern Med 158(9):641–649. https://doi.org/10.7326/0003-4819-158-9-201305070-00003 Oldham JM, Ma SF, Martinez FJ, Anstrom KJ, Raghu G, Schwartz DA, Huang Y (2015) TOLLIP, MUC5B, and the response to N-acetylcysteine among individuals with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 192(12):1475–1482. https://doi.org/10.1164/rccm.201505-1010OC Noth I, Anstrom KJ, Calvert SB, De Andrade J, Flaherty KR, Glazer C, Olman MA (2012) A placebo-controlled randomized trial of warfarin in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 186(1):88–95. https://doi.org/10.1164/rccm.201202-0314OC Daniels CE, Lasky JA, Limper AH, Mieras K, Gabor E, Schroeder DR (2010) Imatinib treatment for idiopathic pulmonary fibrosis: randomized placebo-controlled trial results. Am J Respir Crit Care Med 181(6):604–610. https://doi.org/10.1164/rccm.200906-0964OC Raghu G, Wells AU, Nicholson AG, Richeldi L, Flaherty KR, Le Maulf F, Hansell DM (2017) Effect of nintedanib in subgroups of idiopathic pulmonary fibrosis by diagnostic criteria. Am J Respir Crit Care Med 195(1):78–85. https://doi.org/10.1164/rccm.201602-0402OC Noble PW, Albera C, Bradford WZ, Costabel U, Glassberg MK, Kardatzke D, Valeyre D (2011) Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials. Lancet 377(9779):1760–1769. https://doi.org/10.1016/S0140-6736(11)60405-4 Eickelberg O, Pansky A, Koehler E, Bihl M, Tamm M, Hildebrand P, Roth M (2001) Molecular mechanisms of TGF-β antagonism by interferon γ and cyclosporine A in lung fibroblasts. FASEB J 15(3):797–806. https://doi.org/10.1096/fj.00-0233com Nagano J, Iyonaga K, Kawamura K, Yamashita A, Ichiyasu H, Okamoto T, Kohrogi H (2006) Use of tacrolimus, a potent antifibrotic agent, in bleomycin-induced lung fibrosis. Eur Respir J 27(3):460–469. https://doi.org/10.1183/09031936.06.00070705 Arai T, InoueY SY, Tachibana K, Nakao K, Sugimoto C, Hayashi S (2014) Predictors of the clinical effects of pirfenidone on idiopathic pulmonary fibrosis. Respir Investig 52(2):136–143. https://doi.org/10.1016/j.resinv.2013.09.002 Ogura T, Taniguchi H, Azuma A, Inoue Y, Kondoh Y, Hasegawa Y, Kluglich M (2015) Safety and pharmacokinetics of nintedanib and pirfenidone in idiopathic pulmonary fibrosis. Eur Respir J 45(5):1382–1392. https://doi.org/10.1183/09031936.00198013 Zhao L, Wang X, Chang Q, Xu J, Huang Y, Guo Q, Wang J (2010) Neferine, a bisbenzylisoquinline alkaloid attenuates bleomycin-induced pulmonary fibrosis. Eur J Pharmacol 627(1-3):304–312. https://doi.org/10.1016/j.ejphar.2009.11.007 Cui Y, Shen N, Dang J, Mei L, Tao Y, Liu Z (2017) Anti-inflammatory bioactive equivalence of combinatorial components β-carboline alkaloids identified in Arenaria kansuensis by two-dimensional chromatography and solid-phase extraction coupled with liquid–liquid extraction enrichment technology. J Sep Sci 40(14):2895–2905. https://doi.org/10.1002/jssc.201700144 Cui Y, Jiang L, Yu R, Shao Y, Mei L, Tao Y (2019) β-carboline alkaloids attenuate bleomycin induced pulmonary fibrosis in mice through inhibiting NF-kb/p65 phosphorylation and epithelial-mesenchymal transition. J Ethnopharmacol 243:112096. https://doi.org/10.1016/j.jep.2019.112096 Godevac D, Damjanovic A, Stanojkovic TP, Andelkovic B, Zdunic G (2018) Identification of cytotoxic metabolites from Mahonia aquifolium using 1H NMR-based metabolomics approach. J Pharm Biomed Anal 150:9–14. https://doi.org/10.1016/j.jpba.2017.11.075 Petruczynik A, Plech T, Tuzimski T, Misiurek J, Kaproń B, Misiurek D, Waksmundzka-Hajnos M (2019) Determination of Selected Isoquinoline Alkaloids from Mahonia Aquifolia; Meconopsis Cambrica; Corydalis Lutea; Dicentra Spectabilis; Fumaria Officinalis; Macleaya Cordata Extracts by HPLC-DAD and Comparison of Their Cytotoxic Activity. Toxins 11(10):575. https://doi.org/10.3390/toxins11100575 Chitra P, Saiprasad G, Manikandan R, Sudhandiran G (2013) Berberine attenuates bleomycin induced pulmonary toxicity and fibrosis via suppressing NF-κB dependant TGF-β activation: a biphasic experimental study. Toxicol Lett 219(2):178–193. https://doi.org/10.1016/j.toxlet.2013.03.009 Chakraborty K, Dey A, Bhattacharyya A, Dasgupta SC (2019) Anti-fibrotic effect of black tea (Camellia sinensis) extract in experimental pulmonary fibrosis. Tissue Cell 56:14–22. https://doi.org/10.1016/j.tice.2018.11.006 Khan S, Parvez S, Chaudhari B, Ahmad F, Anjum S, Raisuddin S (2013) Ellagic acid attenuates bleomycin and cyclophosphamide-induced pulmonary toxicity in Wistar rats. Food Chem Toxicol 58:210–219. https://doi.org/10.1016/j.fct.2013.03.046 Hemmati AA, Rezaie A, Darabpour P (2013) Preventive effects of pomegranate seed extract on bleomycin-induced pulmonary fibrosis in rat. Jundishapur J Nat Pharm Prod 8(2):76 PMID: 24624192; PMCID: PMC3941905 Surolia R, Li FJ, Wang Z, Li H, Dsouza K, Thomas V, Antony VB (2019) Vimentin intermediate filament assembly regulates fibroblast invasion in fibrogenic lung injury. JCI insight 4(7). https://doi.org/10.1172/jci.insight.123253 Minguzzi S, Barata LE, Shin YG, Jonas PF, Chai HB, Park EJ, Cordell GA (2002) Cytotoxic withanolides from Acnistus arborescens. Phytochemistry 59(6):635–641. https://doi.org/10.1016/S0031-9422(02)00022-5 Alali FQ, Amrine CSM, El-Elimat T, Alkofahi A, Tawaha K, Gharaibah M, Oberlies NH (2014) Bioactive withanolides from Withania obtusifolia. Phytochem Lett 9:96–101. https://doi.org/10.1016/j.phytol.2014.05.002 Naz K, Khan MR, Shah NA, Sattar S, Noureen F, Awan ML (2014) Pistacia chinensis: A potent ameliorator of CCl4 induced lung and thyroid toxicity in rat model. Biomed Res Int 2014:1–13. https://doi.org/10.1155/2014/192906 Bahri S, Ben Ali R, Gasmi K, Mlika M, Fazaa S, Ksouri R, Shlyonsky V (2017) Prophylactic and curative effect of rosemary leaves extract in a bleomycin model of pulmonary fibrosis. Pharm Biol 55(1):462–471. https://doi.org/10.1080/13880209.2016.1247881 Abidi A, Robbe A, Kourda N, Khamsa SB, Legrand A (2017) Nigella sativa, a traditional Tunisian herbal medicine, attenuates bleomycin-induced pulmonary fibrosis in a rat model. Biomed Pharmacother 90:626–637. https://doi.org/10.1016/j.biopha.2017.04.009 Abidi A, Aissani N, Sebai H, Serairi R, Kourda N, Ben Khamsa S (2017) Protective effect of Pistacia lentiscus oil against bleomycin-induced lung fibrosis and oxidative stress in rat. Nutr Cancer 69(3):490–497. https://doi.org/10.1080/01635581.2017.1283423 Abidi A, Serairi R, Kourda N, Ben Ali R, Ben Khamsa S, Feki M (2016) Therapeutic effect of flaxseed oil on experimental pulmonary fibrosis induced by bleomycin in rats. Eur J Inflamm 14(2):133–143. https://doi.org/10.1177/1721727X16652147 Chilakapati SR, Serasanambati M, Manikonda PK, Chilakapati DR, Watson RR (2014) Passion fruit peel extract attenuates bleomycin-induced pulmonary fibrosis in mice. Can J Physiol Pharmacol 92(8):631–639. https://doi.org/10.1139/cjpp-2014-0006 Li XH, Xiao T, Yang JH, Qin Y, Gao JJ, Liu HJ, Zhou HG (2018) Parthenolide attenuated bleomycin-induced pulmonary fibrosis via the NF-κB/Snail signaling pathway. Respir Res 19(1):111. https://doi.org/10.1186/s12931-018-0806-z Punithavathi D, Venkatesan N, Babu M (2000) Curcumin inhibition of bleomycin-induced pulmonary fibrosis in rats. Br J Pharmacol 131(2):169–172. https://doi.org/10.1038/sj.bjp.0703578 Chen M, Cheung FW, Chan MH, Hui PK, Ip SP, Ling YH, Liu WK (2012) Protective roles of Cordyceps on lung fibrosis in cellular and rat models. J Ethnopharmacol 143(2):448–454. https://doi.org/10.1016/j.jep.2012.06.033 Bahri S, Ben Ali R, Nahdi A, Mlika M, Abdennabi R, Jameleddine S (2020) Salvia officinalis attenuates bleomycin-induced oxidative stress and lung fibrosis in rats. Nutr Cancer 72(7):1135–1145. https://doi.org/10.1080/01635581.2019.1675724 Razavi-Azarkhiavi K, Ali-Omrani M, Solgi R, Bagheri P, Haji-Noormohammadi M, Amani N, Sepand MR (2014) Silymarin alleviates bleomycin-induced pulmonary toxicity and lipid peroxidation in mice. Pharm Biol 52(10):1267–1271. https://doi.org/10.3109/13880209.2014.889176 Wianowska D, Wisniewski M (2014) Simplified procedure of silymarin extraction from Silybum marianum L. Gaertner. J Chromatogr Sci 53(2):366–372. https://doi.org/10.1093/chromsci/bmu049 Mizokami H, Tomita-Yokotani K, Yoshitama K (2008) Flavonoids in the leaves of Oxalis corniculata and sequestration of the flavonoids in the wing scales of the pale grass blue butterfly, Pseudozizeeria maha. Int J Plant Res 121(1):133–136 https://doi.org/10.1007/s10265-007-0132-x Srinivasan GV, Unnikrishnan KP, Shree AR, Balachandran I (2008) HPLC estimation of berberine in Tinospora cordifolia and Tinospora sinensis. Indian J Pharm Sci 70(1):96. https://doi.org/10.4103/0250-474X.40341 Khan MT, Lampronti I, Martello D, Bianchi N, Jabbar S, Choudhuri MSK, Gambari R (2002) Identification of pyrogallol as an antiproliferative compound present in extracts from the medicinal plant Emblica officinalis: effects on in vitro cell growth of human tumor cell lines. Int J Oncol Res 21(1):187–192. https://doi.org/10.3892/ijo.21.1.187 Tahir I, Khan MR, Shah NA, Aftab M (2016) Evaluation of phytochemicals, antioxidant activity and amelioration of pulmonary fibrosis with Phyllanthus emblica leaves. BMC Complement Altern Med 16(1):406. https://doi.org/10.1186/s12906-016-1387-3 Qian W, Cai X, Qian Q, Wang D, Zhang L (2020) Angelica sinensis polysaccharide suppresses epithelial-mesenchymal transition and pulmonary fibrosis via a DANCR/AUF-1/FOXO3 regulatory axis. Aging Dis 11(1):17. https://doi.org/10.14336/2FAD.2019.0512 Zhou XM, Wen GY, Zhao Y, Liu YM, Li JX (2013) Inhibitory effects of alkaline extract of Citrus reticulata on pulmonary fibrosis. J Ethnopharmacol 146(1):372–378. https://doi.org/10.1016/j.jep.2013.01.006 Tumbas VT, Cetkovic GS, Djilas SM, Canadanovic-Brunet JM, VulicJJ KZ, Skerget M (2010) Antioxidant activity of mandarin (Citrus reticulata) peel. Acta Period Technol 41:195–203. https://doi.org/10.2298/APT1041195T Ng LT, Yen FL, Liao CW, Lin CC (2007) Protective effect of Houttuynia cordata extract on bleomycin-induced pulmonary fibrosis in rats. Am J Chinese Med 35(03):465–475. https://doi.org/10.1142/S0192415X07004989 Jin M, Wu Y, Wang L, Zang B, Tan L (2016) Hydroxysafflor Yellow A attenuates bleomycin-induced pulmonary fibrosis in mice. Phytother Res 30(4):577–587. https://doi.org/10.1002/ptr.5560 Yang Y, HuangY HC, Lv X, Liu L, Wang Y, Li J (2012) Antifibrosis effects of triterpene acids of Eriobotrya japonica (Thunb.) Lindl. leaf in a rat model of bleomycin-induced pulmonary fibrosis. J Pharm Pharmacol 64(12):1751–1760. https://doi.org/10.1111/j.2042-7158.2012.01550.x Lu GX, Bian DF, Ji Y, Guo JM, Wei ZF, Jiang SD, Dai Y (2014) Madecassoside ameliorates bleomycin-induced pulmonary fibrosis in mice by downregulating collagen deposition. Phytother Res 28(8):1224–1231. https://doi.org/10.1002/ptr.5120 You H, Wei L, Sun WL, Wang L, Yang ZL, Liu Y, Zhang WJ (2014) The green tea extract epigallocatechin-3-gallate inhibits irradiation-induced pulmonary fibrosis in adult rats. Int J Mol Med 34(1):92–102. https://doi.org/10.3892/ijmm.2014.1745 Dona M, Dell Aica I, Calabrese F, Benelli R, Morini M, Albini A, Garbisa S (2003) Neutrophil restraint by green tea: inhibition of inflammation, associated angiogenesis, and pulmonary fibrosis. J Immunol 170(8):4335–4341. https://doi.org/10.4049/jimmunol.170.8.4335 Sriram N, Kalayarasan S, Sudhandiran G (2009) Epigallocatechin-3-gallate exhibits anti-fibrotic effect by attenuating bleomycin-induced glycoconjugates, lysosomal hydrolases and ultrastructural changes in rat model pulmonary fibrosis. Chem Biol Interact 180(2):271–280. https://doi.org/10.1016/j.cbi.2009.02.017 Qin S, Alcorn JF, Craigo JK, Tjoeng C, Tarwater PM, Kolls JK, Reinhart TA (2011) Epigallocatechin-3-gallate reduces airway inflammation in mice through binding to proinflammatory chemokines and inhibiting inflammatory cell recruitment. J Immunol 186(6):3693–3700. https://doi.org/10.4049/jimmunol.1002876 Borden P, Solymar D, Sucharczuk A, Lindman B, Cannon P, Heller RA (1996) Cytokine control of interstitial collagenase and collagenase-3 gene expression in human chondrocytes. J Biol Chem 271(38):23577–23581. https://doi.org/10.1074/jbc.271.38.23577 Saadane A, Masters S, Di Donato J, Li J, Berger M (2007) Parthenolide inhibits IκB kinase, NF-κB activation, and inflammatory response in cystic fibrosis cells and mice. Am J Respir Cell Mol Biol 36(6):728–736. https://doi.org/10.1165/rcmb.2006-0323OC Aggarwal BB, Harikumar KB (2009) Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol 41(1):40–59. https://doi.org/10.1016/j.biocel.2008.06.010 Hewlings SJ, Kalman DS (2017) Curcumin: a review of its’ effects on human health. Foods 6(10):92. https://doi.org/10.3390/foods6100092 Smith MR, Gangireddy SR, Narala VR, Hogaboam CM, Standiford TJ, Christensen PJ, Reddy RC (2010) Curcumin inhibits fibrosis-related effects in IPF fibroblasts and in mice following bleomycin-induced lung injury. Am J Phys Lung Cell Mol Phys 298(5):616–625. https://doi.org/10.1152/ajplung.00002.2009 Zhang XL, Bi-Cheng L, Al-Assaf S, Phillips GO, Phillips AO (2012) Cordyceps sinensis decreases TGF-β1 dependent epithelial to mesenchymal trans differentiation and attenuates renal fibrosis. Food Hydrocoll 28(1):200–212. https://doi.org/10.1016/j.foodhyd.2011.12.016 Liu Y, Wang J, Wang W, Zhang H, Zhang X, Han C (2015) The chemical constituents and pharmacological actions of Cordyceps sinensis. Evid Based Complement Alternat Med 2015:1–12. https://doi.org/10.1155/2015/575063 Ahmad B, Khan MR, Shah NA (2015) Amelioration of carbon tetrachloride-induced pulmonary toxicity with Oxalis corniculata. Toxicol Ind Health 31(12):1243–1251. https://doi.org/10.1177/0748233713487245 Yang L, Jiang JG (2009) Bioactive components and functional properties of Hottuynia cordata and its applications. Pharm Biol 47(12):1154–1161. https://doi.org/10.3109/13880200903019200 Delshad E, Yousefi M, Sasannezhad P, Rakhshandeh H, Ayati Z (2018) Medical uses of Carthamus tinctorius L.(safflower): a comprehensive review from traditional medicine to modern medicine. Electron Physician 10(4):6672. https://doi.org/10.19082/6672 Kuo CL, Chi CW, Liu TY (2004) The anti-inflammatory potential of berberine in vitro and in vivo. Cancer Lett 203(2):127–137. https://doi.org/10.1016/j.canlet.2003.09.002 Zhang XY, Shimura S, Masuda T, Saitoh H, Shirato K (2000) Antisense Oligonucleotides to NF-κ B Improve Survival in Bleomycin-induced Pneumopathy of the Mouse. Am J Respir Crit Care Med 162(4):1561–1568. https://doi.org/10.1164/ajrccm.162.4.9908093 Massaous J, Hata A (1997) TGF-β signalling through the Smad pathway. Trends Cell Biol 7(5):187–192. https://doi.org/10.1016/S0962-8924(97)01036-2 Wrana JL, Attisano L (2000) The smad pathway. Cytokine Growth Factor Rev 11(1-2):5–13. https://doi.org/10.1016/S1359-6101(99)00024-6 Chitra P, Saiprasad G, Manikandan R, Sudhandiran G (2015) Berberine inhibits Smad and non-Smad signaling cascades and enhances autophagy against pulmonary fibrosis. J Mol Med 93(9):1015–1031. https://doi.org/10.1007/s00109-015-1283-1 Chu EC, Tarnawski AS (2004) PTEN regulatory functions in tumor suppression and cell biology. Med Sci Monit 10(10):235–241 PMID: 15448614 Miyoshi K, Yanagi S, Kawahara K, Nishio M, Tsubouchi H, Imazu Y, Suzuki A (2013) Epithelial Pten controls acute lung injury and fibrosis by regulating alveolar epithelial cell integrity. Am J Respir Crit Care Med 187(3):262–275. https://doi.org/10.1164/rccm.201205-0851OC Parapuram SK, Thompson K, Tsang M, Hutchenreuther J, Bekking C, Liu S, Leask A (2015) Loss of PTEN expression by mouse fibroblasts results in lung fibrosis through a CCN2-dependent mechanism. Matrix Biol 43:35–41. https://doi.org/10.1016/j.matbio.2015.01.017 Jiang ZF, Shao LJ, Wang WM, Yan XB, Liu RY (2012) Decreased expression of Beclin-1 and LC3 in human lung cancer. Mol Biol Rep 39(1):259–267 https://doi.org/10.1007/s11033-011-0734-1 Potez M, Trappetti V, Bouchet A, Fernandez-Palomo C, Guc E, Kilarski WW, Djonov V (2018) Characterization of a B16-F10 melanoma model locally implanted into the ear pinnae of C57BL/6 mice. PLoS One 13(11):e0206693. https://doi.org/10.1371/journal.pone.0206693 Hamsa TP, Kuttan G (2012) Berberine inhibits pulmonary metastasis through down-regulation of MMP in metastatic B16F-10 melanoma cells. Phytother Res 26(4):568–578. https://doi.org/10.1002/ptr.3586 Liu Y, Yu H, Zhang C, Cheng Y, Hu L, Meng X, Zhao Y (2008) Protective effects of berberine on radiation-induced lung injury via intercellular adhesion molecular-1 and transforming growth factor-beta-1 in patients with lung cancer. Eur J Cancer 44(16):2425–2432 https://doi.org/10.1016/j.ejca.2008.07.040 Peters DH, Friedel HA, McTavish D (1992) Azithromycin. Drugs 44(5):750–799. https://doi.org/10.2165/00003495-199244050-00007 Tsai WC, Hershenson MB, Zhou Y, Sajjan U (2009) Azithromycin increases survival and reduces lung inflammation in cystic fibrosis mice. Inflamm Res 58(8):491–501. https://doi.org/10.1007/s00011-009-0015-9 Hoffmann N, Lee B, Hentzer M, Rasmussen TB, Song Z, Johansen HK, Høiby N (2007) Azithromycin blocks quorum sensing and alginate polymer formation and increases the sensitivity to serum and stationery-growth-phase killing of Pseudomonas aeruginosa and attenuates chronic P. aeruginosa lung infection in Cftr−/− mice. Antimicrob Agents Chemother 51(10):3677–3687. https://doi.org/10.1128/AAC.01011-06 Folkesson A, Jelsbak L, Yang L, Johansen HK, Ciofu O, Hoiby N, Molin S (2012) Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: an evolutionary perspective. Nat Rev Microbiol 10(12):841. https://doi.org/10.1038/nrmicro2907 Li Y, Huang J, Li L, Liu L (2017) Synergistic activity of berberine with azithromycin against Pseudomonas aeruginosa isolated from patients with cystic fibrosis of lung in vitro and in vivo. Cell Physiol Biochem 42(4):1657–1669. https://doi.org/10.1159/000479411 Nakano T (1954) Studies on the Alkaloids of Magnoliaceous Plants. XIII.: Alkaloids of Magnolia grandiflora L. (2). Pharm Bull 2(4):326–328. https://doi.org/10.1248/cpb1953.2.326 Johnson GL, Lapadat R (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298(5600):1911–1912. https://doi.org/10.1126/science.1072682 Christian F, Smith EL, Carmody RJ (2016) The regulation of NF-κB subunits by phosphorylation. Cells 5(1):12. https://doi.org/10.3390/cells5010012 Yu J, Che J, Liu L, Yang F, Zhu X, Cao B (2016) Tetrahydropalmatine attenuates irradiation induced lung injuries in rats. Life Sci 153:74–81. https://doi.org/10.1016/j.lfs.2016.03.056 Ruffer M, Ekundayo O, Nagakura N, Zenk MH (1983) Biosynthesis of the protoberberine alkaloid jatrorrhizine. Tetrahedron Lett (26):2643–2644 Tan RX, Meng J C, Hostettmann K (2000) Phytochemical investigation of some traditional Chinese medicines and endophyte cultures. Pharm Biol, 38(sup1):25-32. https://doi.org/10.1076/phbi.38.6.25.5955. Luo T, Shen XY, Li S, Ouyang T, Mai QA, Wang HQ (2017) The protective effect of jatrorrhizine against oxidative stress in primary rat cortical neurons. CNS Neurol Disord Drug Targets 16(5):617–623. https://doi.org/10.2174/1871527315666160711101210 Ahmad A, Husain A, Mujeeb M, Khan SA, Najmi AK, Siddique NA, Damanhouri ZA, Anwar F (2013) A review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pac J Trop Biomed 3(5):337–352. https://doi.org/10.1016/S2221-1691(13)60075-1