Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Một bài tổng quan về tầm quan trọng của các hợp chất sinh học trong các cây thuốc trong việc điều trị xơ phổi vô căn (nhấn mạnh đặc biệt vào các ancaloit isoquinoline)
Tóm tắt
Xơ phổi vô căn (IPF) là một bệnh phổi chết người có nguyên nhân không xác định, làm rối loạn cấu trúc và chức năng bình thường của phổi bằng cách điều tiết sai lệch các phản ứng miễn dịch, cuối cùng dẫn đến cái chết của cá nhân. Nhiều yếu tố có thể dẫn đến sự phát triển của bệnh này và hiện tại chưa có phương pháp chữa trị cho bệnh. Có một số loại thuốc tổng hợp có sẵn để làm giảm triệu chứng và làm chậm sự phát triển của bệnh bằng cách nhắm vào các con đường liên quan đến sự phát triển của IPF, nhưng cũng đã phát hiện ra nhiều tác dụng phụ do việc sử dụng chúng. Đã có nhiều thập kỷ nay, cây thuốc và các hợp chất của chúng được sử dụng trên toàn thế giới trong y học tự nhiên để chữa trị nhiều bệnh khác nhau. Bài báo tổng quan này tập trung vào tác động của các hợp chất sinh học tự nhiên từ 26 loại chiết xuất thực vật có tính chất phòng ngừa và điều trị đối với bệnh, và do đó có thể được sử dụng trong việc điều trị IPF để thay thế thuốc tổng hợp và giảm thiểu tác dụng phụ. Bài tổng quan này bao gồm các cơ chế khác nhau gây ra xơ phổi, cùng với những hợp chất có thể kích thích xơ hóa, các loại thuốc dùng để điều trị xơ phổi, chẩn đoán, các xét nghiệm sinh hóa được sử dụng trong nghiên cứu thực nghiệm để xác định bệnh sinh của bệnh với một ghi chú đặc biệt về các ancaloit isoquinoline và vai trò của chúng trong việc giảm các yếu tố khác nhau dẫn đến IPF, từ đó cung cấp một cách tiếp cận điều trị đầy hứa hẹn.
Từ khóa
Tài liệu tham khảo
Takishima T (1994) Basic and clinical aspects of pulmonary fibrosis. CRC Press, Boca Raton, pp 501–502
Higashiyama H, Yoshimoto D, Kaise T, Matsubara S, Fujiwara M, Kikkawa H, Kinoshita M (2007) Inhibition of activin receptor-like kinase 5 attenuates bleomycin-induced pulmonary fibrosis. Exp Mol Pathol 83(1):39–46. https://doi.org/10.1016/j.yexmp.2006.12.003
Hay ED (1991) Collagen and other matrix glycoproteins in embryogenesis. In: Cell biology of extracellular matrix. Springer, Boston, pp 419–462. https://doi.org/10.1007/978-1-4615-3770-0_13
George PM, Patterson CM, Reed AK, Thillai M (2019) Lung transplantation for idiopathic pulmonary fibrosis. Lancet Respir Med 7(3):271–282. https://doi.org/10.1016/S2213-2600(18)30502-2
Kuwano K, Kunitake R, Kawasaki M, Nomoto Y, Hagimoto N, Nakanishi Y, Hara N (1996) P21Waf1/Cip1/Sdi1 and p53 expression in association with DNA strand breaks in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 154(2):477–483. https://doi.org/10.1164/ajrccm.154.2.8756825
Van Wyk BE, Wink M (2004) Medicinal plants of the world. Briza Publications, Pretoria
Wynn TA (2011) Integrating mechanisms of pulmonary fibrosis. J Exp Med 208(7):1339–1350. https://doi.org/10.1084/jem.20110551
Gilmore MA (1991) Phases of wound healing. Dimens Oncol Nurs 5(3):32–34 PMID: 1823567
Steenfos HH (1994) Growth factors and wound healing. Scand J Plast Reconstr Surg Hand 28(2):95–105. https://doi.org/10.3109/02844319409071186
Krafts KP (2010) Tissue repair: The hidden drama. Organogenesis 6(4):225–233. https://doi.org/10.4161/org.6.4.12555
Willis BC, duBois RM, Borok Z (2006) Epithelial origin of myofibroblasts during fibrosis in the lung. Proc Am Thorac Soc 3(4):377–382. https://doi.org/10.1513/pats.200601-004TK
Li J, Chen J, Kirsner R (2007) Pathophysiology of acute wound healing. Clin Dermatol 25(1):9–18. https://doi.org/10.1016/j.clindermatol.2006.09.007
Guo SA, DiPietro LA (2010) Factors affecting wound healing. J Dent Res 89(3):219–229. https://doi.org/10.1177/0022034509359125
Martinon F (2008) Detection of immune danger signals by NALP3. J Leukoc Biol 83(3):507–511. https://doi.org/10.1189/jlb.0607362
Kolb M, Margetts PJ, Anthony DC, Pitossi F, Gauldie J (2001) Transient expression of IL-1β induces acute lung injury and chronic repair leading to pulmonary fibrosis. J Clin Invest 107(12):1529–1536. https://doi.org/10.1172/JCI12568
Simonian PL, Roark CL, Wehrmann F, Lanham AK, del Valle FD, Born WK, Fontenot AP (2009) Th17-polarized immune response in a murine model of hypersensitivity pneumonitis and lung fibrosis. J Immunol 182(1):657–665. https://doi.org/10.4049/jimmunol.182.1.657
Martinez FO, Gordon S (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 6:13. https://doi.org/10.12703/P6-13
Wynn TA, Barron L (2010) Macrophages: master regulators of inflammation and fibrosis. Semin Liver Dis 30(03):245–257. https://doi.org/10.1055/s-0030-1255354
Song E, Ouyang N, Hörbelt M, Antus B, Wang M, Exton MS (2000) Influence of alternatively and classically activated macrophages on fibrogenic activities of human fibroblasts. Cell Immunol 204(1):19–28. https://doi.org/10.1006/cimm.2000.1687
Hancock A, Armstrong L, Gama R, Millar A (1998) Production of interleukin 13 by alveolar macrophages from normal and fibrotic lung. Am J Respir Cell Mol Biol 18(1):60–65. https://doi.org/10.1165/ajrcmb.18.1.2627
Cui H, Guo S, Banerjee S, Xie N, Liu RM, Thannickal VJ, Liu G (2019) Apolipoprotein E in Recruited Alveolar Macrophages Promotes Lung Fibrosis Resolution. C58. MECHANISMS OF PULMONARY FIBROSIS. Am Thorac Soc 199:5246–5246. https://doi.org/10.1164/ajrccm-conference.2019.199.1_MeetingAbstracts.A5246
Wynn TA, Vannella KM (2016) Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44(3):450–462. https://doi.org/10.1016/j.immuni.2016.02.015
Jakubzick C, Choi ES, Joshi BH, Keane MP, KunkelSL PRK, Hogaboam CM (2003) Therapeutic attenuation of pulmonary fibrosis via targeting of IL-4-and IL-13-responsive cells. J Immunol 171(5):2684–2693. https://doi.org/10.4049/jimmunol.171.5.2684
Kolosowska N, Keuters MH, Wojciechowski S, Keksa-Goldsteine V, Laine M, Malm T, Dhungana H (2019) Peripheral administration of IL-13 induces anti-inflammatory microglial/macrophage responses and provides neuroprotection in ischemic stroke. Neurotherapeutics 16(14):1304–1319. https://doi.org/10.1007/s13311-019-00761-0
Hayashi N, Yoshimoto T, Izuhara K, Matsui K, Tanaka T, Nakanishi K (2007) T helper 1 cells stimulated with ovalbumin and IL-18 induce airway hyperresponsiveness and lung fibrosis by IFN-γ and IL-13 production. Proc Natl Acad Sci 104(37):14765–14770. https://doi.org/10.1073/pnas.0706378104
Konigshoff M, Balsara N, Pfaff EM, Kramer M, Chrobak I, Seeger W, Eickelberg O (2008) Functional Wnt signaling is increased in idiopathic pulmonary fibrosis. PLoS One 3(5):e2142. https://doi.org/10.1371/journal.pone.0002142
Konigshoff M, Kramer M, Balsara N, Wilhelm J, Amarie OV, Jahn A, Günther A (2009) WNT1-inducible signaling protein–1 mediates pulmonary fibrosis in mice and is upregulated in humans with idiopathic pulmonary fibrosis. J Clin Investig 119(4):772–787. https://doi.org/10.1172/JCI33950
Xia H, Diebold D, Nho R, Perlman D, Kleidon J, Kahm J, Henke C (2008) Pathological integrin signaling enhances proliferation of primary lung fibroblasts from patients with idiopathic pulmonary fibrosis. J Exp Med 205(7):1659–1672. https://doi.org/10.1084/jem.20080001
Pandit KV, Corcoran D, Yousef H, Yarlagadda M, Tzouvelekis A, Gibson KF, Richards T (2010) Inhibition and role of let-7d in idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol 182(2):220–229. https://doi.org/10.1164/rccm.200911-1698OC
Elewa YHA, Ichii O, Takada K, Nakamura T, Masum M, Kon Y (2018) Histopathological correlations between mediastinal fat-associated lymphoid clusters and the development of lung inflammation and fibrosis following bleomycin administration in mice. Front Immunol 9:271. https://doi.org/10.3389/fimmu.2018.00271
Umezawa H, Ishizuka M, Maeda K, Takeuchi T (1967) Studies on bleomycin. Cancer 20(5):891–895. https://doi.org/10.1002/1097-0142(1967)20:5<891::AID-CNCR2820200550>3.0.CO;2-V
Adamson IY (1976) Pulmonary toxicity of bleomycin. Environ Health Perspect 16:119–125. https://doi.org/10.1289/ehp.7616119
Xu Q, Liu Y, Pan H, Xu T, Li Y, Yuan J, Ni C (2019) Aberrant expression of miR-125a-3p promotes fibroblast activation via Fyn/STAT3 pathway during silica-induced pulmonary fibrosis. Toxicology 414:57–67. https://doi.org/10.1016/j.tox.2019.01.007
Bismuth C, Garnier R, Baud FJ, Muszynski J, Keyes C (1990) Paraquat poisoning. Drug Saf 5(4):243–251. https://doi.org/10.2165/00002018-199005040-00002
Cantor JO, Osman M, Cerreta JM, Suarez R, Mandl I, Turino GM (1984) Amiodarone-induced pulmonary fibrosis in hamsters. Exp Lung Res 6(1):1–10. https://doi.org/10.1016/j.rmcr.2019.01.014
Qian P, Hong Peng C, Ye X (2019) Interstitial pneumonia induced by cyclophosphamide: A case report and review of the literature. Respir Med Case Rep 26:212–214. https://doi.org/10.1016/j.rmcr.2019.01.014
Uchida M, Shiraishi H, Ohta S, Arima K, Taniguchi K, Suzuki S, Toda S (2012) Periostin, a matricellular protein, plays a role in the induction of chemokines in pulmonary fibrosis. Am J Respir Cell Mol Biol 46(5):677–686 https://doi.org/10.1165/rcmb.2011-0115OC
Paakko P, Sormunen R, Risteli L, Risteli J, Ala-Kokko L, Ryhänen L (1989) Malotilate prevents accumulation of type III pN-collagen, type IV collagen, and laminin in carbon tetrachloride-induced pulmonary fibrosis in rats. Am J Respir Crit Care Med 139(5):1105–1111 https://doi.org/10.1164/ajrccm/139.5.1105
Das M, Boerma M, Goree JR, Lavoie EG, Fausther M, Gubrij IB, Dranoff JA (2014) Pathological changes in pulmonary circulation in carbon tetrachloride (CCl4)-induced cirrhotic mice. PLoS One 9(4):e96043. https://doi.org/10.1371/journal.pone.0096043
Chow LN, Schreiner P, Ng BY, Lo B, Hughes MR, Scott RW, Barta I (2016) Impact of a CXCL12/CXCR4 antagonist in bleomycin (BLM) induced pulmonary fibrosis and carbon tetrachloride (CCL4) induced hepatic fibrosis in mice. PLoS One 11(3):e0151765. https://doi.org/10.1371/journal.pone.0151765
Kim HR, Lee K, Park CW, Song JA, Park YJ, Chung KH (2016) Polyhexamethylene guanidine phosphate aerosol particles induce pulmonary inflammatory and fibrotic responses. Arch Toxicol 90(3):617–632 https://doi.org/10.1007/s00204-015-1486-9
Johnston CJ, Williams JP, Okunief P, Finkelstein JN (2002) Radiation-induced pulmonary fibrosis: examination of chemokine and chemokine receptor families. Radiat Res 157(3):256–265. https://doi.org/10.1667/0033-7587(2002)157[0256:RIPFEO]2.0.CO;2
Le LC, Le MB, Fauroux B, Forenza N, Dommergues JP, Desbois JC, Pin I (2000) Long-term outcome of idiopathic pulmonary hemosiderosis in children. Medicine 79(5):318–326. https://doi.org/10.1097/00005792-200009000-00005
Lynch DA, Godwin JD, Safrin S, Starko KM, Hormel P, Brown KK, Webb WR (2005) High-resolution computed tomography in idiopathic pulmonary fibrosis: diagnosis and prognosis. Am J Respir Crit Care Med 172(4):488–493. https://doi.org/10.1164/rccm.200412-1756OC
Murata I, Ito K, Takenaka K, Yoshinoya S, Kikuchi K, Kiuchi T, Tanigawa T (1997) Clinical evaluation of pulmonary hypertension in systemic sclerosis and related disorders: a Doppler echocardiographic study of 135 Japanese patients. Chest 111(1):36–43. https://doi.org/10.1378/chest.111.1.36
D’Andrea A, Stanziola AA, Saggar R, Saggar R, Sperlongano S, Conte M, Bossone E (2019) Right ventricular functional reserve in early-stage idiopathic pulmonary fibrosis: an exercise two-dimensional speckle tracking doppler echocardiography study. Chest 155(2):297–306. https://doi.org/10.1016/j.chest.2018.11.015
Xaubet A, Agusti C, Luburich P, Roca J, Monton C, Ayuso MC, Rodriguez-Roisin R (1998) Pulmonary function tests and CT scan in the management of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 158(2):431–436. https://doi.org/10.1164/ajrccm.158.2.9709008
Bonella F, di Marco F, Spagnolo P (2019) Pulmonary Function Tests in Idiopathic Pulmonary Fibrosis. In: Meyer K, Nathan S (eds) Idiopathic Pulmonary Fibrosis. Respiratory Medicine. Humana Press, Cham, pp 85–95. https://doi.org/10.1007/978-3-319-99975-3_5
Zisman DA, Ross DJ, Belperio JA, Saggar R, Lynch JP III, Ardehali A, Karlamangla AS (2007) Prediction of pulmonary hypertension in idiopathic pulmonary fibrosis. Respir Med 101(10):2153–2159. https://doi.org/10.1016/j.rmed.2007.05.012
Marcus CL, Bader D, Stabile MW, Wang CI, Osher AB, Keens TG (1992) Supplemental oxygen and exercise performance in patients with cystic fibrosis with severe pulmonary disease. Chest 101(1):52–57. https://doi.org/10.1378/chest.101.1.52
Costa CM, Neder JA, Verrastro CG, Paula-Ribeiro M, Ramos R, Ferreira EM, Ota-Arakaki J (2019) Uncovering the mechanisms of exertional dyspnoea in combined pulmonary fibrosis and emphysema. Eur Respir J 55(1):1901319. https://doi.org/10.1183/13993003.01319-2019
Zajaczkowska M, Johnson A, Gallur L, Shin J, Henderson C, Williamson J (2019) Transbronchial lung cryobiopsy: a novel confirmatory tool to diagnose asbestos-related pulmonary fibrosis. Respirol Case Rep 7(1):e00380. https://doi.org/10.1002/rcr2.380
Ravaglia C, Tomassetti S, Poletti V (2019) New idiopathic pulmonary fibrosis guidelines: Are cryobiopsy and surgery competitive in clinical practice? Am J Respir Crit Care Med 199(5):666–667. https://doi.org/10.1164/rccm.201809-1718LE
Richeldi L, Davies HRH, Spagnolo P, Luppi F (2003) Corticosteroids for idiopathic pulmonary fibrosis. Cochrane Database Syst Rev (3). https://doi.org/10.1002/14651858.CD002880
Raghu G, Depaso WJ, Cain K, Hammar SP, Wetzel CE, Dreis DF, Winterbauer RH (1991) Azathioprine combined with prednisone in the treatment of idiopathic pulmonary fibrosis: a prospective double-blind, randomized, placebo-controlled clinical trial. Am Rev Respir Dis 144(2):291–296. https://doi.org/10.1164/ajrccm/144.2.291
Raghu G, Brown KK, Costabel U, Cottin V, Du Bois RM, Lasky JA, Fatenejad S (2008) Treatment of idiopathic pulmonary fibrosis with etanercept: an exploratory, placebo-controlled trial. Am J Respir Crit Care Med 178(9):948–955. https://doi.org/10.1164/rccm.200709-1446OC
Gurujeyalakshmi G, Giri SN (1995) Molecular mechanisms of antifibrotic effect of interferon gamma in bleomycin-mouse model of lung fibrosis: downregulation of TGF-β and procollagen I and III gene expression. Exp Lung Res 21(5):791–808. https://doi.org/10.3109/01902149509050842
Jackson RM, Glassberg MK, Ramos CF, Bejarano PA, Butrous G, Gómez-Marin O (2010) Sildenafil therapy and exercise tolerance in idiopathic pulmonary fibrosis. Lung 188(2):115–123. https://doi.org/10.1007/s00408-009-9209-8
Corte TJ, Keir GJ, Dimopoulos K, Howard L, Corris PA, Parfitt L, Maher TM (2014) Bosentan in pulmonary hypertension associated with fibrotic idiopathic interstitial pneumonia. Am J Respir Crit Care Med 190(2):208–217. https://doi.org/10.1164/rccm.201403-0446OC
Raghu G, Million-Rousseau R, Morganti A, Perchenet L, Behr J (2013) Macitentan for the treatment of idiopathic pulmonary fibrosis: the randomised controlled MUSIC trial. Eur Respir J 42(6):1622–1632. https://doi.org/10.1183/09031936.00104612
Raghu G, Behr J, Brown KK, Egan JJ, Kawut SM, Flaherty KR, Costabel U (2013) Treatment of idiopathic pulmonary fibrosis with ambrisentan. Ann Intern Med 158(9):641–649. https://doi.org/10.7326/0003-4819-158-9-201305070-00003
Oldham JM, Ma SF, Martinez FJ, Anstrom KJ, Raghu G, Schwartz DA, Huang Y (2015) TOLLIP, MUC5B, and the response to N-acetylcysteine among individuals with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 192(12):1475–1482. https://doi.org/10.1164/rccm.201505-1010OC
Noth I, Anstrom KJ, Calvert SB, De Andrade J, Flaherty KR, Glazer C, Olman MA (2012) A placebo-controlled randomized trial of warfarin in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 186(1):88–95. https://doi.org/10.1164/rccm.201202-0314OC
Daniels CE, Lasky JA, Limper AH, Mieras K, Gabor E, Schroeder DR (2010) Imatinib treatment for idiopathic pulmonary fibrosis: randomized placebo-controlled trial results. Am J Respir Crit Care Med 181(6):604–610. https://doi.org/10.1164/rccm.200906-0964OC
Raghu G, Wells AU, Nicholson AG, Richeldi L, Flaherty KR, Le Maulf F, Hansell DM (2017) Effect of nintedanib in subgroups of idiopathic pulmonary fibrosis by diagnostic criteria. Am J Respir Crit Care Med 195(1):78–85. https://doi.org/10.1164/rccm.201602-0402OC
Noble PW, Albera C, Bradford WZ, Costabel U, Glassberg MK, Kardatzke D, Valeyre D (2011) Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials. Lancet 377(9779):1760–1769. https://doi.org/10.1016/S0140-6736(11)60405-4
Eickelberg O, Pansky A, Koehler E, Bihl M, Tamm M, Hildebrand P, Roth M (2001) Molecular mechanisms of TGF-β antagonism by interferon γ and cyclosporine A in lung fibroblasts. FASEB J 15(3):797–806. https://doi.org/10.1096/fj.00-0233com
Nagano J, Iyonaga K, Kawamura K, Yamashita A, Ichiyasu H, Okamoto T, Kohrogi H (2006) Use of tacrolimus, a potent antifibrotic agent, in bleomycin-induced lung fibrosis. Eur Respir J 27(3):460–469. https://doi.org/10.1183/09031936.06.00070705
Arai T, InoueY SY, Tachibana K, Nakao K, Sugimoto C, Hayashi S (2014) Predictors of the clinical effects of pirfenidone on idiopathic pulmonary fibrosis. Respir Investig 52(2):136–143. https://doi.org/10.1016/j.resinv.2013.09.002
Ogura T, Taniguchi H, Azuma A, Inoue Y, Kondoh Y, Hasegawa Y, Kluglich M (2015) Safety and pharmacokinetics of nintedanib and pirfenidone in idiopathic pulmonary fibrosis. Eur Respir J 45(5):1382–1392. https://doi.org/10.1183/09031936.00198013
Zhao L, Wang X, Chang Q, Xu J, Huang Y, Guo Q, Wang J (2010) Neferine, a bisbenzylisoquinline alkaloid attenuates bleomycin-induced pulmonary fibrosis. Eur J Pharmacol 627(1-3):304–312. https://doi.org/10.1016/j.ejphar.2009.11.007
Cui Y, Shen N, Dang J, Mei L, Tao Y, Liu Z (2017) Anti-inflammatory bioactive equivalence of combinatorial components β-carboline alkaloids identified in Arenaria kansuensis by two-dimensional chromatography and solid-phase extraction coupled with liquid–liquid extraction enrichment technology. J Sep Sci 40(14):2895–2905. https://doi.org/10.1002/jssc.201700144
Cui Y, Jiang L, Yu R, Shao Y, Mei L, Tao Y (2019) β-carboline alkaloids attenuate bleomycin induced pulmonary fibrosis in mice through inhibiting NF-kb/p65 phosphorylation and epithelial-mesenchymal transition. J Ethnopharmacol 243:112096. https://doi.org/10.1016/j.jep.2019.112096
Godevac D, Damjanovic A, Stanojkovic TP, Andelkovic B, Zdunic G (2018) Identification of cytotoxic metabolites from Mahonia aquifolium using 1H NMR-based metabolomics approach. J Pharm Biomed Anal 150:9–14. https://doi.org/10.1016/j.jpba.2017.11.075
Petruczynik A, Plech T, Tuzimski T, Misiurek J, Kaproń B, Misiurek D, Waksmundzka-Hajnos M (2019) Determination of Selected Isoquinoline Alkaloids from Mahonia Aquifolia; Meconopsis Cambrica; Corydalis Lutea; Dicentra Spectabilis; Fumaria Officinalis; Macleaya Cordata Extracts by HPLC-DAD and Comparison of Their Cytotoxic Activity. Toxins 11(10):575. https://doi.org/10.3390/toxins11100575
Chitra P, Saiprasad G, Manikandan R, Sudhandiran G (2013) Berberine attenuates bleomycin induced pulmonary toxicity and fibrosis via suppressing NF-κB dependant TGF-β activation: a biphasic experimental study. Toxicol Lett 219(2):178–193. https://doi.org/10.1016/j.toxlet.2013.03.009
Chakraborty K, Dey A, Bhattacharyya A, Dasgupta SC (2019) Anti-fibrotic effect of black tea (Camellia sinensis) extract in experimental pulmonary fibrosis. Tissue Cell 56:14–22. https://doi.org/10.1016/j.tice.2018.11.006
Khan S, Parvez S, Chaudhari B, Ahmad F, Anjum S, Raisuddin S (2013) Ellagic acid attenuates bleomycin and cyclophosphamide-induced pulmonary toxicity in Wistar rats. Food Chem Toxicol 58:210–219. https://doi.org/10.1016/j.fct.2013.03.046
Hemmati AA, Rezaie A, Darabpour P (2013) Preventive effects of pomegranate seed extract on bleomycin-induced pulmonary fibrosis in rat. Jundishapur J Nat Pharm Prod 8(2):76 PMID: 24624192; PMCID: PMC3941905
Surolia R, Li FJ, Wang Z, Li H, Dsouza K, Thomas V, Antony VB (2019) Vimentin intermediate filament assembly regulates fibroblast invasion in fibrogenic lung injury. JCI insight 4(7). https://doi.org/10.1172/jci.insight.123253
Minguzzi S, Barata LE, Shin YG, Jonas PF, Chai HB, Park EJ, Cordell GA (2002) Cytotoxic withanolides from Acnistus arborescens. Phytochemistry 59(6):635–641. https://doi.org/10.1016/S0031-9422(02)00022-5
Alali FQ, Amrine CSM, El-Elimat T, Alkofahi A, Tawaha K, Gharaibah M, Oberlies NH (2014) Bioactive withanolides from Withania obtusifolia. Phytochem Lett 9:96–101. https://doi.org/10.1016/j.phytol.2014.05.002
Naz K, Khan MR, Shah NA, Sattar S, Noureen F, Awan ML (2014) Pistacia chinensis: A potent ameliorator of CCl4 induced lung and thyroid toxicity in rat model. Biomed Res Int 2014:1–13. https://doi.org/10.1155/2014/192906
Bahri S, Ben Ali R, Gasmi K, Mlika M, Fazaa S, Ksouri R, Shlyonsky V (2017) Prophylactic and curative effect of rosemary leaves extract in a bleomycin model of pulmonary fibrosis. Pharm Biol 55(1):462–471. https://doi.org/10.1080/13880209.2016.1247881
Abidi A, Robbe A, Kourda N, Khamsa SB, Legrand A (2017) Nigella sativa, a traditional Tunisian herbal medicine, attenuates bleomycin-induced pulmonary fibrosis in a rat model. Biomed Pharmacother 90:626–637. https://doi.org/10.1016/j.biopha.2017.04.009
Abidi A, Aissani N, Sebai H, Serairi R, Kourda N, Ben Khamsa S (2017) Protective effect of Pistacia lentiscus oil against bleomycin-induced lung fibrosis and oxidative stress in rat. Nutr Cancer 69(3):490–497. https://doi.org/10.1080/01635581.2017.1283423
Abidi A, Serairi R, Kourda N, Ben Ali R, Ben Khamsa S, Feki M (2016) Therapeutic effect of flaxseed oil on experimental pulmonary fibrosis induced by bleomycin in rats. Eur J Inflamm 14(2):133–143. https://doi.org/10.1177/1721727X16652147
Chilakapati SR, Serasanambati M, Manikonda PK, Chilakapati DR, Watson RR (2014) Passion fruit peel extract attenuates bleomycin-induced pulmonary fibrosis in mice. Can J Physiol Pharmacol 92(8):631–639. https://doi.org/10.1139/cjpp-2014-0006
Li XH, Xiao T, Yang JH, Qin Y, Gao JJ, Liu HJ, Zhou HG (2018) Parthenolide attenuated bleomycin-induced pulmonary fibrosis via the NF-κB/Snail signaling pathway. Respir Res 19(1):111. https://doi.org/10.1186/s12931-018-0806-z
Punithavathi D, Venkatesan N, Babu M (2000) Curcumin inhibition of bleomycin-induced pulmonary fibrosis in rats. Br J Pharmacol 131(2):169–172. https://doi.org/10.1038/sj.bjp.0703578
Chen M, Cheung FW, Chan MH, Hui PK, Ip SP, Ling YH, Liu WK (2012) Protective roles of Cordyceps on lung fibrosis in cellular and rat models. J Ethnopharmacol 143(2):448–454. https://doi.org/10.1016/j.jep.2012.06.033
Bahri S, Ben Ali R, Nahdi A, Mlika M, Abdennabi R, Jameleddine S (2020) Salvia officinalis attenuates bleomycin-induced oxidative stress and lung fibrosis in rats. Nutr Cancer 72(7):1135–1145. https://doi.org/10.1080/01635581.2019.1675724
Razavi-Azarkhiavi K, Ali-Omrani M, Solgi R, Bagheri P, Haji-Noormohammadi M, Amani N, Sepand MR (2014) Silymarin alleviates bleomycin-induced pulmonary toxicity and lipid peroxidation in mice. Pharm Biol 52(10):1267–1271. https://doi.org/10.3109/13880209.2014.889176
Wianowska D, Wisniewski M (2014) Simplified procedure of silymarin extraction from Silybum marianum L. Gaertner. J Chromatogr Sci 53(2):366–372. https://doi.org/10.1093/chromsci/bmu049
Mizokami H, Tomita-Yokotani K, Yoshitama K (2008) Flavonoids in the leaves of Oxalis corniculata and sequestration of the flavonoids in the wing scales of the pale grass blue butterfly, Pseudozizeeria maha. Int J Plant Res 121(1):133–136 https://doi.org/10.1007/s10265-007-0132-x
Srinivasan GV, Unnikrishnan KP, Shree AR, Balachandran I (2008) HPLC estimation of berberine in Tinospora cordifolia and Tinospora sinensis. Indian J Pharm Sci 70(1):96. https://doi.org/10.4103/0250-474X.40341
Khan MT, Lampronti I, Martello D, Bianchi N, Jabbar S, Choudhuri MSK, Gambari R (2002) Identification of pyrogallol as an antiproliferative compound present in extracts from the medicinal plant Emblica officinalis: effects on in vitro cell growth of human tumor cell lines. Int J Oncol Res 21(1):187–192. https://doi.org/10.3892/ijo.21.1.187
Tahir I, Khan MR, Shah NA, Aftab M (2016) Evaluation of phytochemicals, antioxidant activity and amelioration of pulmonary fibrosis with Phyllanthus emblica leaves. BMC Complement Altern Med 16(1):406. https://doi.org/10.1186/s12906-016-1387-3
Qian W, Cai X, Qian Q, Wang D, Zhang L (2020) Angelica sinensis polysaccharide suppresses epithelial-mesenchymal transition and pulmonary fibrosis via a DANCR/AUF-1/FOXO3 regulatory axis. Aging Dis 11(1):17. https://doi.org/10.14336/2FAD.2019.0512
Zhou XM, Wen GY, Zhao Y, Liu YM, Li JX (2013) Inhibitory effects of alkaline extract of Citrus reticulata on pulmonary fibrosis. J Ethnopharmacol 146(1):372–378. https://doi.org/10.1016/j.jep.2013.01.006
Tumbas VT, Cetkovic GS, Djilas SM, Canadanovic-Brunet JM, VulicJJ KZ, Skerget M (2010) Antioxidant activity of mandarin (Citrus reticulata) peel. Acta Period Technol 41:195–203. https://doi.org/10.2298/APT1041195T
Ng LT, Yen FL, Liao CW, Lin CC (2007) Protective effect of Houttuynia cordata extract on bleomycin-induced pulmonary fibrosis in rats. Am J Chinese Med 35(03):465–475. https://doi.org/10.1142/S0192415X07004989
Jin M, Wu Y, Wang L, Zang B, Tan L (2016) Hydroxysafflor Yellow A attenuates bleomycin-induced pulmonary fibrosis in mice. Phytother Res 30(4):577–587. https://doi.org/10.1002/ptr.5560
Yang Y, HuangY HC, Lv X, Liu L, Wang Y, Li J (2012) Antifibrosis effects of triterpene acids of Eriobotrya japonica (Thunb.) Lindl. leaf in a rat model of bleomycin-induced pulmonary fibrosis. J Pharm Pharmacol 64(12):1751–1760. https://doi.org/10.1111/j.2042-7158.2012.01550.x
Lu GX, Bian DF, Ji Y, Guo JM, Wei ZF, Jiang SD, Dai Y (2014) Madecassoside ameliorates bleomycin-induced pulmonary fibrosis in mice by downregulating collagen deposition. Phytother Res 28(8):1224–1231. https://doi.org/10.1002/ptr.5120
You H, Wei L, Sun WL, Wang L, Yang ZL, Liu Y, Zhang WJ (2014) The green tea extract epigallocatechin-3-gallate inhibits irradiation-induced pulmonary fibrosis in adult rats. Int J Mol Med 34(1):92–102. https://doi.org/10.3892/ijmm.2014.1745
Dona M, Dell Aica I, Calabrese F, Benelli R, Morini M, Albini A, Garbisa S (2003) Neutrophil restraint by green tea: inhibition of inflammation, associated angiogenesis, and pulmonary fibrosis. J Immunol 170(8):4335–4341. https://doi.org/10.4049/jimmunol.170.8.4335
Sriram N, Kalayarasan S, Sudhandiran G (2009) Epigallocatechin-3-gallate exhibits anti-fibrotic effect by attenuating bleomycin-induced glycoconjugates, lysosomal hydrolases and ultrastructural changes in rat model pulmonary fibrosis. Chem Biol Interact 180(2):271–280. https://doi.org/10.1016/j.cbi.2009.02.017
Qin S, Alcorn JF, Craigo JK, Tjoeng C, Tarwater PM, Kolls JK, Reinhart TA (2011) Epigallocatechin-3-gallate reduces airway inflammation in mice through binding to proinflammatory chemokines and inhibiting inflammatory cell recruitment. J Immunol 186(6):3693–3700. https://doi.org/10.4049/jimmunol.1002876
Borden P, Solymar D, Sucharczuk A, Lindman B, Cannon P, Heller RA (1996) Cytokine control of interstitial collagenase and collagenase-3 gene expression in human chondrocytes. J Biol Chem 271(38):23577–23581. https://doi.org/10.1074/jbc.271.38.23577
Saadane A, Masters S, Di Donato J, Li J, Berger M (2007) Parthenolide inhibits IκB kinase, NF-κB activation, and inflammatory response in cystic fibrosis cells and mice. Am J Respir Cell Mol Biol 36(6):728–736. https://doi.org/10.1165/rcmb.2006-0323OC
Aggarwal BB, Harikumar KB (2009) Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol 41(1):40–59. https://doi.org/10.1016/j.biocel.2008.06.010
Hewlings SJ, Kalman DS (2017) Curcumin: a review of its’ effects on human health. Foods 6(10):92. https://doi.org/10.3390/foods6100092
Smith MR, Gangireddy SR, Narala VR, Hogaboam CM, Standiford TJ, Christensen PJ, Reddy RC (2010) Curcumin inhibits fibrosis-related effects in IPF fibroblasts and in mice following bleomycin-induced lung injury. Am J Phys Lung Cell Mol Phys 298(5):616–625. https://doi.org/10.1152/ajplung.00002.2009
Zhang XL, Bi-Cheng L, Al-Assaf S, Phillips GO, Phillips AO (2012) Cordyceps sinensis decreases TGF-β1 dependent epithelial to mesenchymal trans differentiation and attenuates renal fibrosis. Food Hydrocoll 28(1):200–212. https://doi.org/10.1016/j.foodhyd.2011.12.016
Liu Y, Wang J, Wang W, Zhang H, Zhang X, Han C (2015) The chemical constituents and pharmacological actions of Cordyceps sinensis. Evid Based Complement Alternat Med 2015:1–12. https://doi.org/10.1155/2015/575063
Ahmad B, Khan MR, Shah NA (2015) Amelioration of carbon tetrachloride-induced pulmonary toxicity with Oxalis corniculata. Toxicol Ind Health 31(12):1243–1251. https://doi.org/10.1177/0748233713487245
Yang L, Jiang JG (2009) Bioactive components and functional properties of Hottuynia cordata and its applications. Pharm Biol 47(12):1154–1161. https://doi.org/10.3109/13880200903019200
Delshad E, Yousefi M, Sasannezhad P, Rakhshandeh H, Ayati Z (2018) Medical uses of Carthamus tinctorius L.(safflower): a comprehensive review from traditional medicine to modern medicine. Electron Physician 10(4):6672. https://doi.org/10.19082/6672
Kuo CL, Chi CW, Liu TY (2004) The anti-inflammatory potential of berberine in vitro and in vivo. Cancer Lett 203(2):127–137. https://doi.org/10.1016/j.canlet.2003.09.002
Zhang XY, Shimura S, Masuda T, Saitoh H, Shirato K (2000) Antisense Oligonucleotides to NF-κ B Improve Survival in Bleomycin-induced Pneumopathy of the Mouse. Am J Respir Crit Care Med 162(4):1561–1568. https://doi.org/10.1164/ajrccm.162.4.9908093
Massaous J, Hata A (1997) TGF-β signalling through the Smad pathway. Trends Cell Biol 7(5):187–192. https://doi.org/10.1016/S0962-8924(97)01036-2
Wrana JL, Attisano L (2000) The smad pathway. Cytokine Growth Factor Rev 11(1-2):5–13. https://doi.org/10.1016/S1359-6101(99)00024-6
Chitra P, Saiprasad G, Manikandan R, Sudhandiran G (2015) Berberine inhibits Smad and non-Smad signaling cascades and enhances autophagy against pulmonary fibrosis. J Mol Med 93(9):1015–1031. https://doi.org/10.1007/s00109-015-1283-1
Chu EC, Tarnawski AS (2004) PTEN regulatory functions in tumor suppression and cell biology. Med Sci Monit 10(10):235–241 PMID: 15448614
Miyoshi K, Yanagi S, Kawahara K, Nishio M, Tsubouchi H, Imazu Y, Suzuki A (2013) Epithelial Pten controls acute lung injury and fibrosis by regulating alveolar epithelial cell integrity. Am J Respir Crit Care Med 187(3):262–275. https://doi.org/10.1164/rccm.201205-0851OC
Parapuram SK, Thompson K, Tsang M, Hutchenreuther J, Bekking C, Liu S, Leask A (2015) Loss of PTEN expression by mouse fibroblasts results in lung fibrosis through a CCN2-dependent mechanism. Matrix Biol 43:35–41. https://doi.org/10.1016/j.matbio.2015.01.017
Jiang ZF, Shao LJ, Wang WM, Yan XB, Liu RY (2012) Decreased expression of Beclin-1 and LC3 in human lung cancer. Mol Biol Rep 39(1):259–267 https://doi.org/10.1007/s11033-011-0734-1
Potez M, Trappetti V, Bouchet A, Fernandez-Palomo C, Guc E, Kilarski WW, Djonov V (2018) Characterization of a B16-F10 melanoma model locally implanted into the ear pinnae of C57BL/6 mice. PLoS One 13(11):e0206693. https://doi.org/10.1371/journal.pone.0206693
Hamsa TP, Kuttan G (2012) Berberine inhibits pulmonary metastasis through down-regulation of MMP in metastatic B16F-10 melanoma cells. Phytother Res 26(4):568–578. https://doi.org/10.1002/ptr.3586
Liu Y, Yu H, Zhang C, Cheng Y, Hu L, Meng X, Zhao Y (2008) Protective effects of berberine on radiation-induced lung injury via intercellular adhesion molecular-1 and transforming growth factor-beta-1 in patients with lung cancer. Eur J Cancer 44(16):2425–2432 https://doi.org/10.1016/j.ejca.2008.07.040
Peters DH, Friedel HA, McTavish D (1992) Azithromycin. Drugs 44(5):750–799. https://doi.org/10.2165/00003495-199244050-00007
Tsai WC, Hershenson MB, Zhou Y, Sajjan U (2009) Azithromycin increases survival and reduces lung inflammation in cystic fibrosis mice. Inflamm Res 58(8):491–501. https://doi.org/10.1007/s00011-009-0015-9
Hoffmann N, Lee B, Hentzer M, Rasmussen TB, Song Z, Johansen HK, Høiby N (2007) Azithromycin blocks quorum sensing and alginate polymer formation and increases the sensitivity to serum and stationery-growth-phase killing of Pseudomonas aeruginosa and attenuates chronic P. aeruginosa lung infection in Cftr−/− mice. Antimicrob Agents Chemother 51(10):3677–3687. https://doi.org/10.1128/AAC.01011-06
Folkesson A, Jelsbak L, Yang L, Johansen HK, Ciofu O, Hoiby N, Molin S (2012) Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: an evolutionary perspective. Nat Rev Microbiol 10(12):841. https://doi.org/10.1038/nrmicro2907
Li Y, Huang J, Li L, Liu L (2017) Synergistic activity of berberine with azithromycin against Pseudomonas aeruginosa isolated from patients with cystic fibrosis of lung in vitro and in vivo. Cell Physiol Biochem 42(4):1657–1669. https://doi.org/10.1159/000479411
Nakano T (1954) Studies on the Alkaloids of Magnoliaceous Plants. XIII.: Alkaloids of Magnolia grandiflora L. (2). Pharm Bull 2(4):326–328. https://doi.org/10.1248/cpb1953.2.326
Johnson GL, Lapadat R (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298(5600):1911–1912. https://doi.org/10.1126/science.1072682
Christian F, Smith EL, Carmody RJ (2016) The regulation of NF-κB subunits by phosphorylation. Cells 5(1):12. https://doi.org/10.3390/cells5010012
Yu J, Che J, Liu L, Yang F, Zhu X, Cao B (2016) Tetrahydropalmatine attenuates irradiation induced lung injuries in rats. Life Sci 153:74–81. https://doi.org/10.1016/j.lfs.2016.03.056
Ruffer M, Ekundayo O, Nagakura N, Zenk MH (1983) Biosynthesis of the protoberberine alkaloid jatrorrhizine. Tetrahedron Lett (26):2643–2644
Tan RX, Meng J C, Hostettmann K (2000) Phytochemical investigation of some traditional Chinese medicines and endophyte cultures. Pharm Biol, 38(sup1):25-32. https://doi.org/10.1076/phbi.38.6.25.5955.
Luo T, Shen XY, Li S, Ouyang T, Mai QA, Wang HQ (2017) The protective effect of jatrorrhizine against oxidative stress in primary rat cortical neurons. CNS Neurol Disord Drug Targets 16(5):617–623. https://doi.org/10.2174/1871527315666160711101210
Ahmad A, Husain A, Mujeeb M, Khan SA, Najmi AK, Siddique NA, Damanhouri ZA, Anwar F (2013) A review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pac J Trop Biomed 3(5):337–352. https://doi.org/10.1016/S2221-1691(13)60075-1
