A review of the effect of integrated STEM or STEAM (science, technology, engineering, arts, and mathematics) education in South Korea
Tóm tắt
Integrated STEAM education in South Korea is an approach to preparing a quality STEM workforce and literate citizens for highly technology-based society. Through a literature review, this study examined the STEAM education initiative in South Korea and investigated its effects on learning and teaching. Studies in South Korea found that teacher professional development courses increased teachers’ recognition of the initiative as well as their confidence in teaching STEAM. Teacher interviews showed that coaching in classroom practices within teachers’ professional development was helpful. Although studies reported that many science teachers adopted STEAM in science teaching, there was a lack of research on how teachers taught STEAM lessons, let alone the connections between teachers’ perceptions of STEAM and their classroom practices. As for STEAM effects on student learning, a number of meta-analyses showed that students’ experiences with STEAM were effective in both cognitive and affective learning. The effect was higher in affective domains. Interviews with college students who had STEAM experiences in grade school showed that the effects could be long-term. The meta-analysis studies failed to identify significant mediating factors, which required further in-depth research on how contextual variables function in student learning. This paper provides a glimpse of what can be achieved through STEAM efforts, and what should be further researched for better theory and practice.
Tài liệu tham khảo
American Institutes for Research (2018). Concerns-Based Adoption Model (CBAM). Retrieved from http://www.sedl.org/cbam/ Accessed 2 May 2018.
Baik, Y., Kim, Y., Nho, S., Lee, J., Jung, J., Han, H., et al. (2012). 융합인재교육(STEAM) 실행 방향 정립을 위한 기초연구 [A study on the action plans for STEAM education]. Seoul: KOFAC.
Banks, F., & Barlex, D. (2014). Teaching STEM in the secondary school. New York: Routledge.
Berland, L. K., & Steingut, R. (2016). Explaining variation in student efforts towards using math and science knowledge in engineering contexts. International Journal of Science Education, 38(18), 2742–2761. https://doi.org/10.1080/09500693.2016.1260179.
Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to meta-analysis. Chichester: Wiley.
Bybee, R. W. (2010). What is STEM education? Science, 329(5995), 996. https://doi.org/10.1126/science.1194998.
Chae, H., & Noh, S.-G. (2014). 2009 개정 초등학교 과학과 교육과정의 융합인재교육(STEAM)에 대한 교사의 관심도와 실행 수준 분석 [Analysis of teachers’ stages of concern and levels of use on STEAM of the 2009 elementary science curriculum]. Journal of Korean Elementary Science Education, 33(4), 634–645.
Cho, Y.-J. (2018). 실과, 기술·가정의 STEAM 교육 프로그램 효과에 관한 메타분석 [A meta-analysis on the effectiveness of STEAM program in practical arts education and technology·home economics]. The Journal of Practical Arts Education Research, 24(1), 155–174.
Cochran-Smith, M., & Lytle, S. (1999). Teacher learning communities. Review of Research in Education, 24, 24–32.
Crismond, D. (2001). Learning and using science ideas when doing investigate-and-redesign tasks: A study of naive, novice, and expert designers doing constrained and scaffolded design work. Journal of Research in Science Teaching, 38(7), 791–820. https://doi.org/10.1002/tea.1032.
Davis, M. (1998). Making a case for design-based learning. Arts Education Policy Review, 100(2), 7–15. https://doi.org/10.1080/10632919809599450.
Fortus, D., Dershimer, R. C., Krajcik, J., Marx, R. W., & Mamlok-Naaman, R. (2004). Design-based science and student learning. Journal of Research in Science Teaching, 41(10), 1081–1110. https://doi.org/10.1002/tea.20040.
Galison, P. (2010). Trading with the enemy. In Trading zones and interactional expertise (pp. 25–52). Cambridge: The MIT Press.
Han, I., Hwang, S., & Yoo, J. (2016). STEAM 심화과정 교사연수 프로그램 개발 및 운영 [Development and management of the advanced STEAM teacher training program]. Journal of the Korean Association for Research in Science Education, 36(3), 399–411.
Henriksen, D. (2014). Full STEAM ahead: Creativity in excellent STEM teaching practices. STEAM, 1(2), 1–9. https://doi.org/10.5642/steam.20140102.15.
Hmelo-Silver, C. E. (2004). Problem-based learning: What and how do students learn? Educational Psychology Review, 16(3), 235–266. https://doi.org/10.1023/B:EDPR.0000034022.16470.f3.
Hunter, J. E. (2004). Methods of meta-analysis: Correcting error and bias in research findings (2nd ed.). Thousand Oaks: Sage.
International Technology Education Association. (2007). Standards for technological literacy: Content for the study of technology (3rd ed.). Reston: International Technology Education Association Available from https://www.iteea.org/default.aspx?id=37346&q=standards.
Jang, C. W., & Kim, S. Y. (2002). 구조적 측면에서 접근한 이공계 기피 현상의 원인분석과 정책과제 [factor analyses for the avoidance of science & technical engineering colleges and policy implications in Korea]. The Journal of Vocational Education Research, 21(2), 115–140.
Jho, H., Hong, O., & Song, J. (2016). An analysis of STEM/STEAM teacher education in Korea with a case study of two schools from a community of practice perspective. Eurasia Journal of Mathematics, Science and Technology Education, 12(7), 1843–1862. https://doi.org/10.12973/eurasia.2016.1538a.
Kang, N.-H., Byun, S., Im, S., Yoo, J. E., Lee, N., Rho, M., & Jung, J. Y. (2017). 2016 융합인재교육(STEEAM) 효과성 분석 [the effects of STEAM projects: Year 2016 analysis]. Seoul: KOFAC.
Kang, N.-H., Im, S., Byun, S., Lee, E., Lee, N., Oh, K., & Seo, Y. (2018). 2017 융합인재교육(STEEAM) 효과성 분석 [the effects of STEAM projects: Year 2017] analysis. Seoul: KOFAC.
Kang, N.-H., & Kim, S. (2015). 교사의 관점으로 본 STEAM 교육 [teachers’ perceptions of STEAM education]. Curriculum and Instruction Journal, 15(2), 2–9.
Kang, N., Lee, N., Rho, M., & Yoo, J. E. (2018). 융합인재교육(STEAM) 프로그램이 학생에 미친 효과에 대한 메타분석 [Meta-analysis of STEAM (science, technology, engineering, arts, mathematics) program effect on student learning]. Journal of the Korean Association for Science Education, 38(6), 875–883. https://doi.org/10.14697/jkase.2018.38.6.875.
Kelley, T. R., & Knowles, J. G. (2016). A conceptual framework for integrated STEM education. International Journal of STEM Education, 3(1), 11. https://doi.org/10.1186/s40594-016-0046-z.
Kang, N.-H., & Wallace, C. S. (2005). Secondary science teachers’ use of laboratory activities: Linking epistemological beliefs, goals, and practices. Science Education, 89(1), 140–165. https://doi.org/10.1002/sce.20013.
Kim, H., & Chae, D. H. (2016). The development and application of a STEAM program based on traditional Korean culture. Eurasia Journal of Mathematics, Science and Technology Education, 12(7), 1925–1936. https://doi.org/10.12973/eurasia.2016.1539a.
Kim, M., & Kim, T. (2016). 기술 중심 융합교육(SETAM) 효과에 대한 메타분석 [meta-analysis on the effect of convergence education (STEAM) based on technology]. The Journal of Korean Practical Arts Education, 22(4), 65–83.
Kim, J. W., & Won, H. H. (2014). 초등학교 STEAM 교육의 창의성 효과에 대한 메타분석 [the effect of creativity in STEAM education]. Journal of Educational Evaluation, 27(4), 965–985.
Korea Foundation for the Advancement and Creativity (2019). About STEAM. Retrieved from https://steam.kofac.re.kr/?page_id=11269
Korea Ministry of Education. (2015). 2015 개정 과학과 교육과정 [The 2015 Revised Science Curriculum]. Report no. 2015–74. Sejong: Author.
Lee, M.-S. (2014a). 융합교육 연수 경험과 수업 적용 여부가 STEAM 관심단계에 미치는 영향 [the effect of teacher’s training and teaching experience for integrative education on teacher’s concerns]. Korean Journal of Educational Research, 52(1), 251–271.
Lee, M.-S. (2014b). 융합교육과정에 대한 교사의 성공지능 교수효능감과 집단적 교수효능감 분석 [the analysis of teaching efficacy for successful intelligence and collective teacher efficacy to STEAM]. Secondary Education Research, 62(1), 93–116.
Lee, J.-K., Lee, T.-K., Shin, S., Chung, D.-H., & Oh, S.-W., & (2013). 중등학생들이 생각하는 융합인재에 대한 이미지 유형 탐색 [Exploring the image types of secondary school students’ perception about the talented person in convergence]. Journal of the Korean Association for Research in Science Education, 33(7), 1486–1509. https://doi.org/10.14697/jkase.2013.33.7.1486.
Lee, J., Lee, T., & Ha, M. (2013). 교사들의 아이디어 융합과정에서 나타나는 교역지대의 진화과정 탐색: 자율적 학습공동체 ‘STEAM 교사 연구회’ 사례 연구 [Exploring the evolution patterns of trading zones appearing in the convergence of teachers’ ideas: The case study of a learning community of teaching volunteers ‘STEAM teacher community’]. Journal of the Korean Association for Research in Science Education, 33(5), 1055–1086.
Lee, J.-M., & Shin, Y.-J. (2014). 융합인재교육 (STEAM) 수업에서 초등교사들이 겪는 어려움 분석 [An analysis of elementary school teachers’ difficulties in the STEAM class]. Journal of Korean Elementary Science Education, 33(4), 588–596.
Lee, H. N., Son, D. I., Kwon, H. S., Park, K. S., Han, I. K., Jung, H. I., et al. (2012). 통합 STEM 교육에 대한 중등 교사의 인식과 요구 [Secondary teachers’ perceptions and needs analysis on integrative STEM education]. Journal of the Korean Association for Research in Science Education, 32(1), 30–45.
Lim, S., Chae, D., Kim, E., Hyun, D., Kim, O., & Han, J. (2014). 융합인재교육(STEAM)의 현장적용에 대한 초등 교사들의 인식조사 [Students’ perceptions after application of a subject substitute STEAM program-focusing on energy unit in 6th grade curriculum]. Journal of the Korean Society of Earth Science Education, 7(1), 119–132.
Lynn, A. B., Moore, T. J., Johnson, C. C., & Roehrig, G. H. (2016). Integrated STEM education. In C. C. Johson, E. E. Peters-Burton, & T. J. Moore (Eds.), STEM road map: A framework for integrated STEM education (pp. 23–37). New York: Routledge.
Martin, M. O., Mullis, I. V. S., Foy, P., & Hooper, M. (2016). TIMSS 2015 International Results in Science. http://timssandpirls.bc.edu/timss2015/international-results/. Accessed 29 Sep 2018.
McLaughlin, M. W., & Talbert, J. E. (2001). Professional communities and the work of high school teaching. Chicago: University of Chicago Press.
Moon, D. (2015). 융합인재교육(STEAM)에 대한 교사의 관심단계와 활용수준 [Teacher’s ‘stages of concerns’ and ‘levels of use’ on STEAM education]. The Journal of Korean Association of Practical Arts Education, 28(1), 35–52.
National Academy of Engineering and National Research Council. (2014). STEM integration in K-12 education: Status, prospects, and an agenda for research. Washington, DC: The National Academies Press. https://doi.org/10.17226/18612.
Nationales MINT (STEM) Forum. (2014). MINT-Bildung im Kontext ganzheitlicher Bildung [STEM-education in the context of holistic education]. Munich: Herbert Utz Verlag.
National Research Council. (2010). Standards for K-12 engineering education? Standards for K-12 engineering education? Washington, D.C.: National Academies Press. https://doi.org/10.17226/12990.
National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and Core ideas. Washington, D.C.: National Academies Press. https://doi.org/10.17226/13165.
NGSS Lead States. (2013). Next generation science standards: For States, by States. Washington, DC: The National Academies Press.
Organization for Economic Co-operation and Development. (2013). PISA 2012 results: Ready to learn: Students’ engagement, drive and self-beliefs (volume III). Paris: PISA, OECD Publishing.
Organization for Economic Co-operation and Development (2016). The OECD Learning Compass. Available at http://www.oecd.org/education/2030/. Accessed 29 Sep 2018.
Park, H., Byun, S., & Sim, J. (2016). Teachers’ perceptions and practices of STEAM education in South Korea. EURASIA Journal of Mathematics, Science & Technology Education, 12(7), 1739–1753. https://doi.org/10.12973/eurasia.2016.1531a.
Partnership for 21st Century Learning (2009). Framework for 21st century learning. http://www.p21.org/our-work/p21-framework. Accessed 29 Sep 2018.
Rho, M., & Yoo, J. (2016). 융합인재교육(STEAM) 프로그램의 과학과 정의적 영역에 대한 메타분석 [A meta-analysis on STEAM programs and science affective domains]. Journal of Educational Evaluation, 29(3), 597–617.
Sanders, M. E. (2012). Integrative stem education as best practice. In H. Middleton (Ed.), Explorations of best practice in technology, design, & engineering education. Vol.2 (pp. 103–117). Queensland: Griffith Institute for Educational Research.
Savery, J. R. (2006). Overview of PBL: Definitions and distinctions. Interdisciplinary Journal of Problem-Based Learning, 1(1), 9–20. https://doi.org/10.7771/1541-5015.1002.
Scherr, R. E., & Hammer, D. (2009). Student behavior and epistemological framing: Examples from collaborative active-learning activities in physics. Cognition and Instruction, 27(2), 147–174. https://doi.org/10.1080/07370000902797379.
Shin, M. (2018). 초등학교 융합인재교육(STEAM) 프로그램 효과 메타분석 [meta-analysis of the effects on the STEAM program for elementary school students]. Journal of Curriculum Integration, 12(2), 47–66.
Shin, Y. J., & Han, S. K. (2011). 초등학교 교사들의 융합인재교육(STEAM)에 대한 인식 연구 [a study of the elementary school teachers’ perception in STEAM (science, technology, engineering, arts, mathematics) education]. Elementary Science Education, 30(4), 514–523.
STEM Learning (2018). About us. https://www.stem.org.uk/. Accessed 29 Sep 2018.
The STEAM Journal (2013). Aims and Scope. https://scholarship.claremont.edu/steam/vol1/iss1/. Accessed 25 Feb 2019.
Wineburg, S., & Grossman, P. L. (Eds.). (2000). Interdisciplinary curriculum: Challenges to implementation. New York: Teachers College Press.
Wallace, C. S., & Kang, N.-H. (2004). An investigation of experienced secondary science teachers’ beliefs about inquiry: An examination of competing belief sets. Journal of Research in Science Teaching, 41(9), 936–960. https://doi.org/10.1002/tea.20032.