A review of the ablative stabilization of the Rayleigh–Taylor instability in regimes relevant to inertial confinement fusion

Physics of Plasmas - Tập 1 Số 5 - Trang 1379-1389 - 1994
J. D. Kilkenny1, S. G. Glendinning1, S. W. Haan1, B. A. Hammel1, J. D. Lindl1, D. H. Munro1, B. A. Remington1, S. V. Weber1, J. P. Knauer2, C. P. Verdon2
1Lawrence Livermore National Laboratory, Livermore, California, 94550
2Laboratory for Laser Engineering, University of Rochester, Rochester, New York 14623-1299

Tóm tắt

It has been recognized for many years that the most significant limitation of inertial confinement fusion (ICF) is the Rayleigh–Taylor (RT) instability. It limits the distance an ablatively driven shell can be moved to several times its initial thickness. Fortunately material flow through the unstable region at velocity vA reduces the growth rate to √kg/1+kL−βkvA with β from 2–3. In recent years experiments using both x-ray drive and smoothed laser drive to accelerate foils have confirmed the community’s understanding of the ablative RT instability in planar geometry. The growth of small initial modulations on the foils is measured for growth factors up to 60 for direct drive and 80 for indirect drive. For x-ray drive large stabilization is evident. After some growth, the instability enters the nonlinear phase when mode coupling and saturation are also seen and compare well with modeling. Normalized growth rates for direct drive are measured to be higher, but strategies for reduction by raising the isentrope are being investigated. For direct drive, high spatial frequencies are imprinted from the laser beam and amplified by the RT instability. Modeling shows an understanding of this ‘‘laser imprinting.’’

Từ khóa


Tài liệu tham khảo

1950, Proc. R. Soc. London Ser. A, 301, 192

1883, Proc. London Math. Soc., 14, 170

1977, Comments Plasma Phys. Controlled Fusion, 3, 1

1954, Astrophys. J., 120, 18, 10.1086/145877

1987, Laser Part. Beams, 6, 118

1991, Astrophys. J., 368, 27, 10.1086/185940

1991, Planet. Space Sci., 39, 1667, 10.1016/0032-0633(91)90027-8

1992, Tectonophysics, 206, 55, 10.1016/0040-1951(92)90367-F

1992, Phys. Rev. Lett., 69, 1884, 10.1103/PhysRevLett.69.1884

1960, Proc. R. Soc. London Ser. A, 257, 386, 10.1098/rspa.1960.0158

1993, Bull. Am. Phys. Soc., 38, 1961

1993, Bull. Am. Phys. Soc., 38, 2011

1994, Phys. Plasmas, 1, 1662, 10.1063/1.870668

1982, Appl. Phys. Lett., 41, 808, 10.1063/1.93695

1975, Phys. Rev. Lett., 34, 1273, 10.1103/PhysRevLett.34.1273

1986, Nucl. Fusion, 26, 1719, 10.1088/0029-5515/26/12/013

1989, Phys. Rev. A, 39, 5812, 10.1103/PhysRevA.39.5812

1981, Phys. Rev. Lett., 46, 333

1974, Phys. Rev. Lett., 33, 761, 10.1103/PhysRevLett.33.761

1993, Phys. Rev. Lett., 71, 3131, 10.1103/PhysRevLett.71.3131

1983, Phys. Fluids, 26, 2299, 10.1063/1.864388

1985, Phys. Fluids, 28, 3676, 10.1063/1.865099

1987, Phys. Fluids, 31, 1007

1991, Phys. Fluids B, 3, 1070, 10.1063/1.859835

1990, Phys. Fluids B, 2, 100

1993, Bull. Am. Phys. Soc., 38, 2010

1993, Phys. Fluids B, 5, 2589, 10.1063/1.860695

1984, Phys. Rev. Lett., 52, 819, 10.1103/PhysRevLett.52.819

1986, Appl. Phys. Lett., 48, 969, 10.1063/1.96626

1988, Phys. Fluids, 31, 2875, 10.1063/1.866996

1992, Rev. Sci. Instrum., 63, 4688, 10.1063/1.1143610

1982, Nature, 299, 329, 10.1038/299329a0

1984, Phys. Rev. Lett., 53, 1352, 10.1103/PhysRevLett.53.1352

1987, Phys. Rev. Lett., 58, 2672, 10.1103/PhysRevLett.58.2672

1980, Bull. Am. Phys. Soc., 25, 946

1981, Bull. Am. Phys. Soc., 26, 1023

1980, J. Phys. D: Appl. Phys., 13, 423, 10.1088/0022-3727/13/3/014

1992, Nucl. Fusion, 32, 667, 10.1088/0029-5515/32/4/I11

1992, Phys. Rev. Lett., 68, 2774, 10.1103/PhysRevLett.68.2774

1992, Phys. Fluids B, 4, 967, 10.1063/1.860113

1991, Phys. Rev. Lett., 67, 3259, 10.1103/PhysRevLett.67.3259

1990, Phys. Fluids B, 2, 1400, 10.1063/1.859563

1991, Nucl. Fusion, 31, 1315, 10.1088/0029-5515/31/7/007

1989, Phys. Rev. A, 40, 3183, 10.1103/PhysRevA.40.3183

1991, Phys. Fluids A, 3, 1312, 10.1063/1.858059

1990, Phys. Rev. A, 41, 5695, 10.1103/PhysRevA.41.5695

1990, Phys. Rev. Lett., 65, 432, 10.1103/PhysRevLett.65.432

1993, Bull. Am. Phys. Soc., 38, 1962

1993, Phys. Fluids B, 5, 896, 10.1063/1.860940

1992, Phys. Rev. Lett., 69, 1201, 10.1103/PhysRevLett.69.1201

1991, Phys. Fluids B, 3, 2640, 10.1063/1.859976

1992, Laser seeded modulation growth on directly driven foils, ICF Quarterly Report, 2, 172

1993, Bull. Am. Phys. Soc., 38, 1961

1992, Bull. Am. Phys. Soc., 37, 1470