A review of channel selection algorithms for EEG signal processing
Tóm tắt
Từ khóa
Tài liệu tham khảo
JR Wolpaw, N Birbaumer, DJ McFarland, G Pfurtscheller, TM Vaughan, Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113(6), 767–791 (2002)
N Birbaumer, Breaking the silence: brain–computer interfaces (BCI) for communication and motor control. Psychophysiology 43, 517–532 (2006)
J. S. Ebersole, T. A. Pedley, Current Practice of Clinical Electroencephalography, 3 edn. (Lippincott Williams & Wilkins, 2003), p. 72–99
B. J. Baars, N. M. Gage, Cognition, Brain, and Consciousness: Introduction to Cognitive Neuroscience, 2nd edn. (Elsevier, 2010)
D Garrett, DA Peterson, CW Anderson, MH Thaut, Comparison of linear, nonlinear, and feature selection methods for EEG signal classification. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 141–144 (2003)
D. Chandler, J. Bisasky, J. L.V.M. Stanislaus, T. Mohsenin, Real-time multi-channel seizure detection and analysis hardware. IEEE Biomedical Circuits and Systems Conference (BioCAS), (2011)
I Guyon, A Elisseeff, An introduction to variable and feature selection. J. Machine Learning Res. 3, 1157–1182 (2003)
H Liu, L Yu, Toward integrating feature selection algorithms for classification and clustering. IEEE Trans. Knowledge Data Eng. 17(4), 491–502 (2005)
RS Fisher, W v E Boas, W Blume, C Elger, P Genton, P Lee, J Engel, Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 46(4), 470–472 (2005)
JD Henriksen, TW Kjaer, RE Madsen, LS Remvig, CE Thomsen, HB Sorensen, Channel selection for automatic seizure detection. Clin. Neurophysiol. 123(1), 84–92 (2012)
S. D. Faul, Dynamic channel selection to reduce computational burden in seizure detection. 32nd Annual International Conference of the IEEE EMBS (San Diego, California USA, 2010)
A Temko, E Thomas, W Marnane, G Lightbody, G Boylan, EEG-based neonatal seizure detection with support vector machines. Clin. Neurophysiol. 122(3), 464–473 (2011)
SD Faul, W Marnane, Dynamic, location-based channel selection for power consumption reduction in EEG analysis. Comput. Methods Programs Biomed. 108, 1206–1215 (2012)
B. Atoufi, C. Lucas, A. Zakerolhosseini, A survey of multi-channel prediction of EEG signal in different EEG state: normal, pre-seizure, and seizure. Proceedings of the Seventh International Conference on Computer Science and Information Technologies, (Yerevan, Armenia, 28 Sept. - 2 Oct., 2009)
E. Shih, A. Shoeb, J. Guttag, Sensor selection for energy-efficient ambulatory medical monitoring. Proceedings of the 7th International Conference on Mobile Systems, Applications, and Services, 2009
K. M. Ong, K. H. Thung, C. Y. Wee, R. Paramesranle, Selection of a subset of EEG channels using PCA to classify alcoholics and non-alcoholics. Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference (Shanghai, China, 2005)
E. L. Glassman, J. V. Guttag, Reducing the number of channels for an ambulatory patient-specific EEG-based epileptic seizure detector by applying recursive feature elimination. In proc. of the 28th annual Int’l IEEE conf., (New York City, Aug 30 – Sept 3, 2006)
P. Mirowski, D. Madhavan, Y. LeCun, R. Kuzniecky, Classification of patterns of EEG synchronization for seizure prediction. Clin. Neurophysiol. 120(11), 1927–1940 (2009)
Freiburg invasive EEG database, Epilepsy Center of the University Hospital of Freiburg, available at http://epilepsy.uni-freiburg.de/freiburg-seizure-prediction-project/eeg-database
N. F. Chang, T. C. Chen, C. Y. Chiang, L. G. Chen, Channel selection for epilepsy seizure predication method based on machine learning. 34th Annual International Conference of the IEEE EMBS, (San Diego, California USA, 2012)
A. L. Goldberger, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh, Mark RG, Mietus JE, Moody GB, Peng C-K, Stanley HE. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation, 101 e215-e220 (2000)
National Taiwan University Medical Library, 2013. http://ntuml.mc.ntu.edu.tw/index_en.asp . Accessed 15 Sept 2014
B. R. Greene, G. B. Boylan, W. P. Marnan, G. Lightbody, S. Cannolly, Automated single channel seizure section in the neonate. Proceedings of the 30th annual Int’l IEEE EMBS conf., (Vancouver, British Columbia, Canada, 2008)
A. Temko, G. Lightbody, G. Boylan, W. Marnane, Online EEG channel weighting for detection of seizures in the neonate. Proceedings of the 33rd Annual International Conference of the IEEE EMBS (Boston, Massachusetts USA, 2011)
Cork University Maternity Hospital database, Ireland. http://www.nbrg.ie/1c9fonyfj1j Accessed 15 Sept 2014
J. Davis, M. Goadrich, The relationship between precision-recall and ROC curves. Proceedings of the 23rd International Conference on Machine Learning, (Pittsburgh, PA, 2006)
MR Zimbric, CM Sharpe, KC Albright, MP Nespeca, Three-channel electroencephalogram montage in neonatal seizure detection and qualification. Pediatr. Neurol. 44(1), 31–34 (2011)
H Tekgul, BFD Bourgeois, K Gauvreau, AM Bergin, Electroencephalography in neonatal seizures: comparison of a reduced and a full 10/20 montage. Pediatr. Neurol. 32(3), 155–161 (2005)
L. He, Z. Yu, Z. Gu, Y. Li, Bhattacharyya bound based channel selection for classification of motor imageries in EEG signals. Proceedings of Chinese Control and Decision Conf., (Guilin, China, 17–19 June, 2009)
A. Bhattacharyya, A., On a measure of divergence between two statistical populations defined by their probability distributions. Bull. Calcutta Math. Soc. 35, 99–109 (1943)
W. K. Tam, Z. Ke, K. Y. Tong, Performance of common spatial pattern under a smaller set of EEG electrodes in brain-computer interface on chronic stroke patients: a multi-session dataset study. Proceedings of the 33rd annual Int’l IEEE EMBS conf., (Boston, Massachusetts USA, Aug. 30 – Sept. 3, 2011)
E Cortes, V Vapnik, Support-vector networks. Machine Learning 20, 273–297 (1995)
C. W. Hsu, C. C. Chang, C. J. Lin, A practical guide to support vector classification. Department of Computer science (2010)
X. Yong, R. K. Ward, G. E. Birch, Sparse spatial filter optimization for EEG channel reduction in brain-computer interface. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), (Las Vegas, Nevada USA, 2008)
Fraunhofer FIRST (Intelligent Data Analysis Group) and University of Medicine Berlin (Neurophysics Group). http://www.bbci.de/competition/iii/desc_IVa.html
J. Meng, G. Liu, G. Huang and X. Zhu, Automated selecting subset of channels based on CSP in motor imagery brain-computer interface system. Proceedings of the 2009 IEEE International Conference on Robotics and Biomimetics, (Guilin, China. Dec. 19–23, 2009)
T. N. Lal, M. Schröder, T. Hinterberger, J. Weston, M. Bogdan, N. Birbaumer, B. Schölkopf, Support vector channel selection in BCI. IEEE Trans. Biomed. Eng. 51(6), (2004)
Y. Wang, S. Gao, X. Gao, Common spatial pattern method for channel selection in motor imagery based brain-computer interface. Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, (Shanghai, China, Sept. 1–4, 2005)
R. O. Duda, P. E. Hart, D. H. Stork, Pattern Classification, 2nd edn. (Wiley Interscience, 2000)
S. Mikat, G. fitscht, J. Weston, B. Scholkopft, K. R. Mullert, Fisher discriminant analysis with kernels. IEEE Conference on Neural Networks for Signal Processing, 41–48 (1999)
H. Shan, H. Yuan, S. Zhu, B. He, EEG-based motor imagery classification accuracy improves with gradually increased channel number. Proceeding of the 34th Annual International Conference of the IEEE EMBS (San Diego, California USA, 28 Aug. - 1 Sept. 2012)
M. Arvaneh, C. Guan, K. K. Ang, C. Quek, Robust EEG channel selection across sessions in brain-computer interface involving stroke patients. Proceeding of the WCCI 2012 IEEE World Congress on Computational Intelligence (WCCI), (Brisbane, Australia June10-15, 2012)
L He, Y Hu, Y Li, D Li, Channel selection by Rayleigh coefficient maximization based genetic algorithm for classifying single-trial motor imagery EEG. J. Neurocomputing 121, 423–433 (2013)
M Arvaneh, C Guan, KK Ang, C Quek, Optimizing the channel selection and classification accuracy in EEG-based BCI. IEEE Trans. Biomed. Eng. 58(6), 1865–1873 (2011)
M Naeem, C Brunner, R Leeb, B Graimann, G Pfurtscheller, Seperability of four-class motor imagery data using independent components analysis. J. Neural Eng. 3, 208–216 (2006)
G. Dornhege, B. Blankertz, G. Curio, and K. R.M¨uller, Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms. IEEE Trans. Biomed. Eng. 51(6), 993–1002 (2004)
Y. Yang, O. Kyrgyzov, J. Wiart, I. Bloch, Subject-specific channel selector for classification of motor imagery electroencephalographic data. Proceedings of the 38th Int’l Conf. on Acoustics, Speech, and Signal Processing, (Vancouver Canada, 2013)
Dataset IVa from BCI competition III. http://www.bbci.de/competition/iv/
Q. Wei, Y. Wang, Binary multi-objective particle swarm optimization for channel selection in motor imagery based brain-computer interfaces. Proceedings of the 4th Biomedical Engineering and Informatics (BMEI) Conf., (Shanghai, China, 15–17 Oct, 2011)
J. Zhou, S. Yedida, Channel selection in EEG-based prediction of shoulder/elbow movement intentions involving stroke patients: a computational approach. Proceedings of the IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)
M. Kamrunnahar, N. S. Dias, S. J. Schiff, Optimization of electrode channels in brain computer interfaces. Proc. Of the 31st Annual International Conference of the IEEE EMBS (Minneapolis, Minnesota, USA, Sept. 2–6, 2009)
PL Nunez, R Srinivasan, Electric fields of the brain: the neurophysics of EEG, 2nd edn. (Oxford University Press, New York, 2006)
P. L. Nunez, Electric fields of the brain, (Oxford University Press, 1981)
R Srinivasan, Methods to improve the spatial resolution of EEG. Int. J. Bioelectromagnetism 1(1), 102–111 (1999)
R. Srinivasan, W. R. Winter, P. L. Nunez, Source analysis of EEG oscillations using high-resolution EEG and MEG," Event-Related Dynamics of Brain Oscillations. Progress in Brain Research, C. Neuper and W. Klimesch, eds., 29–42 (2006)
N. S. Dias, M. Kamrunnahar, P. M. Mendes, S. J. Schiff, J. H. Correia, Comparison of EEG pattern classification methods for brain-computer interfaces. Proceedings of the 29th Annual International Conference of the IEEE EMBS (Cité Internationale, Lyon, France, 2540–2543 (2007))
N. S. Dias, M. Kamrunnahar, P. M. Mendes, S. J. Schiff, J. H. Correia, Customized linear discriminant analysis for brain-computer interfaces. Proceedings of the 3rd International IEEE EMBS Conference on Neural Engineering (Kohala Coast, Hawaii, USA, pp. 430–433, 2007)
J Yang, H Singh, EL Hines, F Schlaghecken, DD Iliescu, MS Leeson, NG Stocks, Channel selection and classification of electroencephalogram signals: an artificial neural network and genetic algorithm-based approach. Artif. Intell. Med. 55, 117–126 (2012)
C. R. Reeves, J. E. Rowe, Genetic Algorithms: Principles and Perspectives: A Guide to GA Theory, (Boston Kluwer Academic Publishers; 2003)
SY Yuen, CK Chow, A genetic algorithm that adaptively mutates and never revisits. IEEE Trans. Evol. Comput. 13(2), 454–472 (2009)
M. Schroder, T. N. Lal, T. Hinterberger, M. Bogdan, N. J. Hill, N. Birbaumer, W. Rosenstiel, Bernhard Scholkopf, Robust EEG channel selection across subjects for brain-computer interfaces. EURASIP J. Appl. Signal Process. 19 3103–3112 (2005)
PD Welch, The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15(2), 70–73 (1967)
M. Li, J. Ma, S. Jia, Optimal combination of channels selection based on common spatial pattern algorithm. Proceedings of the IEEE Int’l conf. on Mechatronics and Automation, (Beijing, China, Aug. 7–10, 2011)
M Rizon, M. Murugappan, R. Nagarajan, S. Yaacob, Asymmetric ratio and FCM based salient channel selection for human emotion detection using EEG. WSEAS Trans. Signal Process. 4(10), (2008)
N. Jatupaiboon, S. Pan-ngum, P. Israsena, Emotion classification using minimal EEG channels and frequency bands. Proceedings of 10th Int’l Joint conf. on Computer Science and Software Engineering (JCSSE 2013) (Khon Kaen, Thailand, 2013)
S Elise, D Glauser, KR Scherer, The Geneva affective picture database (GAPED): a new 730-picture database focusing on valence and normative significance. Behav. Res. Methods 43(2), 468–477 (2011)
Emotiv EEG Neuroheadset. Available online: http://emotiv.com/upload/manual/EEGSpecifications.pdf [Access 12 Nov. 2013], http://www.emotiv.com
T. Lan, D. Erdogmus, A. Adami, S. Mathan, M. Pavel, Channel selection and feature projection for cognitive load estimation using ambulatory EEG. Computational Intelligence and Neuroscience (2007)
R. Chai, S. H. Ling, G. P. Hunter, H. T. Nguyen, Toward fewer EEG channels and better feature extractor of non-motor imagery mental tasks classification for a wheelchair thought controller. Proceedings of the 34th annual Int’l IEEE EMBS conf., (San Diego, California USA, 2012)
K. Tavakolian, A. M. Nasrabadi, S. Rezaei, Selecting better EEG channels for classification of mental tasks. Proceedings of Int’l symposium on Circuits and Systems, (Vancouver, Canada, 2004)
A Piryatinska, WA Woyczynski, MS Scher, KA Loparo, Optimal channel selection for analysis of EEG-sleep patterns of neonates. J. Comput. Methods Programs Biomed. 106(1), 14–26 (2012)
K. M. Ong, K. H. Thung, C. Y. Wee, R. Paramesranle, Selection of a subset of EEG channels using PCA to classify alcoholics and non-alcoholics. Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference (Shanghai, China, Sept. 1–4, 2005)
S Gao, Y Wang, X Gao, B Hong, Visual and auditory brain–computer interfaces. IEEE Trans. Biomed. Eng. 61(5), 1436–1447 (2014)
B. Graimann, B. Allison, G. Pfurtscheller, Brain-Computer Interfaces: Revolutionizing Human-Computer Interaction, (Springer 2010)
V Kachitvichyanukul, Comparison of three evolutionary algorithms: GA, PSO, and DE. Ind. Eng. Manag. Syst. 11(3), 215–223 (2012)