A retrospective analysis of factors influencing the success of autotransplanted posterior teeth
Tóm tắt
Survival and success rates of tooth transplantations even after long follow-up periods have been shown to be very high. Nevertheless, it is important to analyse factors potentially influencing these rates. The aim of this study was to assess the influence on success of potential factors. The research was based on a retrospective analysis of clinical and radiological data from a sample of 59 subjects (75 transplanted teeth). The follow-up period varied from 0.44 to 12.28 years (mean 3.95 years). Success rates were calculated and depicted with Kaplan-Meier plots. Log-rank tests were used to analyse the effect of root development stage, apex width, the use of enamel matrix proteins or the surgeon on success of transplantations. Results for success of premolar transplantations were comparable with already published data, while molars performed worse than shown in other studies. The surgeon performing the transplantation (p = 0.001) and tooth type (p ≤ 0.001) were significantly associated with transplantation success. Use of enamel matrix proteins (p = 0.10), root development stage (p = 0.13), the recipient area (p = 0.48) and apex width (p = 0.59) were not significantly associated with success. Molar transplantations were not as successful as premolar transplantations; however, success rates varied greatly depending on the surgeon’s experience. The use of enamel matrix proteins as well as root development stage, the recipient area and apex width did not show significant associations with success of tooth transplantations.
Tài liệu tham khảo
Pape HD, Heiss R. History of tooth transplantation. Fortschr Kiefer Gesichtschir. 1976;20:121–5.
Slagsvold O, Bjercke B. Autotransplantation of premolars with partly formed roots. A radiographic study of root growth. Am J Orthod. 1974;66(4):355–66.
Slagsvold O, Bjercke B. Applicability of autotransplantation in cases of missing upper anterior teeth. Am J Orthod. 1978;74(4):410–21.
Slagsvold O, Bjercke B. Indications for autotransplantation in cases of missing premolars. Am J Orthod. 1978;74(3):241–57.
Andreasen JO, Paulsen HU, Yu Z, Ahlquist R, Bayer T, Schwartz O. A long-term study of 370 autotransplanted premolars. Part I. Surgical procedures and standardized techniques for monitoring healing. Eur J Orthod. 1990;12(1):3–13.
Andreasen JO, Paulsen HU, Yu Z, Bayer T, Schwartz O. A long-term study of 370 autotransplanted premolars. Part II. Tooth survival and pulp healing subsequent to transplantation. Eur J Orthod. 1990;12(1):14–24.
Andreasen JO, Paulsen HU, Yu Z, Schwartz O. A long-term study of 370 autotransplanted premolars. Part III. Periodontal healing subsequent to transplantation. Eur J Orthod. 1990;12(1):25–37.
Andreasen JO, Paulsen HU, Yu Z, Bayer T. A long-term study of 370 autotransplanted premolars. Part IV. Root development subsequent to transplantation. Eur J Orthod. 1990;12(1):38–50.
Czochrowska EM, Stenvik A, Bjercke B, Zachrisson BU. Outcome of tooth transplantation: survival and success rates 17–41 years posttreatment. Am J Orthod Dentofacial Orthop. 2002;121(2):110–9. quiz 93.
Tsukiboshi M. Autotransplantation of teeth: requirements for predictable success. Dent Traumatol. 2002;18(4):157–80.
Zachrisson BU, Stenvik A, Haanaes HR. Management of missing maxillary anterior teeth with emphasis on autotransplantation. Am J Orthod Dentofacial Orthop. 2004;126(3):284–8. doi:10.1016/S0889540604005244.
Andreasen JO, Hjorting-Hansen E, Jolst O. A clinical and radiographic study of 76 autotransplanted third molars. Scand J Dent Res. 1970;78(6):512–23.
Bauss O, Engelke W, Fenske C, Schilke R, Schwestka-Polly R. Autotransplantation of immature third molars into edentulous and atrophied jaw sections. Int J Oral Maxillofac Surg. 2004;33(6):558–63. doi:10.1016/j.ijom.2003.10.008.
Schutz S, Beck I, Kuhl S, Filippi A. Results after wisdom tooth transplantation. A retrospective study. Schweiz Monatsschr Zahnmed. 2013;123(4):303–13.
Denys D, Shahbazian M, Jacobs R, Laenen A, Wyatt J, Vinckier F, et al. Importance of root development in autotransplantations: a retrospective study of 137 teeth with a follow-up period varying from 1 week to 14 years. Eur J Orthod. 2013;35(5):680–8. doi:10.1093/ejo/cjs112.
Palioto DB, Rodrigues TL, Marchesan JT, Beloti MM, de Oliveira PT, Rosa AL. Effects of enamel matrix derivative and transforming growth factor-beta1 on human osteoblastic cells. Head Face Med. 2011;7:13. doi:10.1186/1746-160X-7-13.
Rodrigues TL, Marchesan JT, Coletta RD, Novaes Jr AB, Grisi MF, Souza SL, et al. Effects of enamel matrix derivative and transforming growth factor-beta1 on human periodontal ligament fibroblasts. J Clin Periodontol. 2007;34(6):514–22. doi:10.1111/j.1600-051X.2007.01090.x.
Takayanagi K, Osawa G, Nakaya H, Cochran DL, Kamoi K, Oates TW. Effects of enamel matrix derivative on bone-related mRNA expression in human periodontal ligament cells in vitro. J Periodontol. 2006;77(5):891–8. doi:10.1902/jop.2006.050244.
Zeldich E, Koren R, Dard M, Weinberg E, Weinreb M, Nemcovsky CE. Enamel matrix derivative induces the expression of tissue inhibitor of matrix metalloproteinase-3 in human gingival fibroblasts via extracellular signal-regulated kinase. J Periodontal Res. 2010;45(2):200–6. doi:10.1111/j.1600-0765.2009.01218.x.
Zeldich E, Koren R, Nemcovsky C, Weinreb M. Enamel matrix derivative stimulates human gingival fibroblast proliferation via ERK. J Dent Res. 2007;86(1):41–6.
Sculean A, Schwarz F, Becker J, Brecx M. The application of an enamel matrix protein derivative (Emdogain) in regenerative periodontal therapy: a review. Med Princ Pract. 2007;16(3):167–80. doi:10.1159/000100386.
Filippi A, Pohl Y, von Arx T. Treatment of replacement resorption with Emdogain—a prospective clinical study. Dent Traumatol. 2002;18(3):138–43.
von Buren A, Krastl G, Kuhl S, Filippi A. Management of avulsions in Switzerland 2007–2010. Dent Traumatol. 2014;30(3):176–81. doi:10.1111/edt.12080.
Esposito M, Grusovin MG, Coulthard P, Worthington HV. Enamel matrix derivative (Emdogain) for periodontal tissue regeneration in intrabony defects. Cochrane Database Syst Rev. 2005;4:CD003875. doi:10.1002/14651858.CD003875.pub2.
Zanatta FB, de Souza FG, Pinto TM, Antoniazzi RP, Rosing CK. Do the clinical effects of enamel matrix derivatives in infrabony defects decrease overtime? A systematic review and meta-analysis. Braz Dent J. 2013;24(5):446–55. doi:10.1590/0103-6440201302192.
Schjott M, Andreasen JO. Emdogain does not prevent progressive root resorption after replantation of avulsed teeth: a clinical study. Dent Traumatol. 2005;21(1):46–50. doi:10.1111/j.1600-9657.2004.00295.x.
Moorrees CF, Fanning EA, Hunt Jr EE. Age variation of formation stages for ten permanent teeth. J Dent Res. 1963;42:1490–502.
Kallu R, Vinckier F, Politis C, Mwalili S, Willems G. Tooth transplantations: a descriptive retrospective study. Int J Oral Maxillofac Surg. 2005;34(7):745–55. doi:10.1016/j.ijom.2005.03.009.
Cross D, El-Angbawi A, McLaughlin P, Keightley A, Brocklebank L, Whitters J, et al. Developments in autotransplantation of teeth. Surgeon. 2013;11(1):49–55. doi:10.1016/j.surge.2012.10.003.
Lundberg T, Isaksson S. A clinical follow-up study of 278 autotransplanted teeth. Br J Oral Maxillofac Surg. 1996;34(2):181–5.
Ferreira MMFB, Lina C, Barbara O, Palmeirao CE. The effect of Emdogain gel on periodontal regeneration in autogenous transplanted dog's teeth. Indian J Dent Res. 2014;25(5):589–93.
Iqbal MK, Bamaas N. Effect of enamel matrix derivative (EMDOGAIN) upon periodontal healing after replantation of permanent incisors in beagle dogs. Dent Traumatol. 2001;17(1):36–45.
Wiegand A, Attin T. Efficacy of enamel matrix derivatives (Emdogain) in treatment of replanted teeth—a systematic review based on animal studies. Dent Traumatol. 2008;24(5):498–502. doi:10.1111/j.1600-9657.2008.00662.x.
Filippi A, Pohl Y, von Arx T. Treatment of replacement resorption by intentional replantation, resection of the ankylosed sites, and Emdogain—results of a 6-year survey. Dent Traumatol. 2006;22(6):307–11. doi:10.1111/j.1600-9657.2005.00363.x.