A reference-grade genome identifies salt-tolerance genes from the salt-secreting mangrove species Avicennia marina
Tóm tắt
Từ khóa
Tài liệu tham khảo
Gerland, P. et al. World population stabilization unlikely this century. Science 346, 234–237 (2014).
FAO, UNICEF, WFP, WHO. In Brief to The State of Food Security and Nutrition in the World 2020, Transforming Food Systems for Affordable Healthy Diets (FAO, 2020).
Koohafkan, P. & Stewart, B. in Water and Cereals in Drylands 5–15 (FAO, 2008).
FAO. FAO Land and Plant Nutrition Management Service (FAO, 2008).
FAO. The World’s Mangroves 1980–2005 (Forestry Department, Food and Agriculture Organization of the United Nations, 2007).
Ellison, A. M., Farnsworth, E. J. & Merkt, R. E. Origins of mangrove ecosystems and the mangrove biodiversity anomaly. Glob. Ecol. Biogeogr. 8, 95–115 (1999).
Xu, S. et al. The origin, diversification and adaptation of a major mangrove clade (Rhizophoreae) revealed by whole-genome sequencing. Natl Sci. Rev. 4, 721–734 (2017).
He, Z. et al. Convergent adaptation of the genomes of woody plants at the land–sea interface. Natl Sci. Rev. 7, 978–993 (2020).
Waisel, Y., Eshel, A. & Agami, M. Salt balance of leaves of the mangrove Avicennia marina. Physiol. Plant. 67, 67–72 (1986).
Krishnamurthy, P. et al. Role of root hydrophobic barriers in salt exclusion of a mangrove plant Avicennia officinalis. Plant Cell Environ. 37, 1656–1671 (2014).
Shimony, C., Fahn, A. & Reinhold, L. Ultrastructure and ion gradients in the salt glands of Avicennia marina (Forssk.) Vierh. N. Phytol. 72, 27–36 (1973).
Dasgupta, N., Nandy, P., Sengupta, C. & Das, S. Salinity mediated biochemical changes towards differential adaptability of three mangroves from Indian Sundarbans. J. Plant Biochem. Biotechnol. 23, 31–41 (2014).
Ashihara, H. et al. Compatible solutes and inorganic ions in the mangrove plant Avicennia marina and their effects on the activities of enzymes. Z. f.ür. Naturforsch. C. 52, 433–440 (1997).
Friis, G. et al. A high-quality genome assembly and annotation of the gray mangrove, Avicennia marina. G3. 11, 1–7 (2021).
Hu, M.-J. et al. Chromosome-scale assembly of the Kandelia obovata genome. Hortic. Res. 7, 1–12 (2020).
Lyu, H., He, Z., Wu, C. I. & Shi, S. Convergent adaptive evolution in marginal environments: unloading transposable elements as a common strategy among mangrove genomes. N. Phytol. 217, 428–438 (2018).
Mehta, P. A., Sivaprakash, K., Parani, M., Venkataraman, G. & Parida, A. K. Generation and analysis of expressed sequence tags from the salt-tolerant mangrove species Avicennia marina (Forsk) Vierh. Theor. Appl. Genet. 110, 416–424 (2005).
Ganesan, G., Sankararamasubramanian, H., Harikrishnan, M., Ashwin, G. & Parida, A. A MYB transcription factor from the grey mangrove is induced by stress and confers NaCl tolerance in tobacco. J. Exp. Bot. 63, 4549–4561 (2012).
Kavitha, K., George, S., Venkataraman, G. & Parida, A. A salt-inducible chloroplastic monodehydroascorbate reductase from halophyte Avicennia marina confers salt stress tolerance on transgenic plants. Biochimie 92, 1321–1329 (2010).
Prashanth, S., Sadhasivam, V. & Parida, A. Over expression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica rice var Pusa Basmati-1 confers abiotic stress tolerance. Transgenic Res. 17, 281–291 (2008).
Murugesan, A. K. et al. Ectopic expression of AmNAC1 from Avicennia marina (Forsk.) Vierh. confers multiple abiotic stress tolerance in yeast and tobacco. Plant Cell Tissue Organ Culture 142, 51–68 (2020).
Hoagland, D. R. & Arnon, D. I. The water-culture method for growing plants without soil. Circ. Calif. Agric Exp. Station 347, 32 (1950).
Nguyen, H. T., Stanton, D. E., Schmitz, N., Farquhar, G. D. & Ball, M. C. Growth responses of the mangrove Avicennia marina to salinity: development and function of shoot hydraulic systems require saline conditions. Ann. Bot. 115, 397–407 (2015).
Das, A., Basak, U. & Das, P. Variation in nuclear DNA content and kayotype analysis in three species of Avicennia, a tree mangrove of voastal Orissa. Cytobios 84, 93–102 (1995).
Pan, W. & Lonardi, S. Accurate detection of chimeric contigs via bionano optical maps. Bioinformatics 35, 1760–1762 (2019).
Moon, G., Clough, B., Peterson, C. & Allaway, W. Apoplastic and symplastic pathways in Avicennia marina (Forsk.) Vierh. roots revealed by fluorescent tracer dyes. Funct. Plant Biol. 13, 637–648 (1986).
Maurel, C. & Chrispeels, M. J. Aquaporins. A molecular entry into plant water relations. Plant Physiol. 125, 135–138 (2001).
Maruyama, K. et al. Identification of cold‐inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J. 38, 982–993 (2004).
Zhang, Y. et al. Expression of a rice DREB1 gene, OsDREB1D, enhances cold and high-salt tolerance in transgenic Arabidopsis. BMB Rep. 42, 486–492 (2009).
Stracke, R., Werber, M. & Weisshaar, B. The R2R3-MYB gene family in Arabidopsis thaliana. Curr. Opin. Plant Biol. 4, 447–456 (2001).
Katiyar, A. et al. Genome-wide classification and expression analysis of MYB transcription factor families in rice and Arabidopsis. BMC Genomics 13, 544 (2012).
Taji, T. et al. Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol. 135, 1697–1709 (2004).
Katschnig, D., Jaarsma, R., Almeida, P., Rozema, J. & Schat, H. Differences in proton pumping and Na/H exchange at the leaf cell tonoplast between a halophyte and a glycophyte. AoB Plants 6, plu023 (2014).
Yang, X., Liang, Z., Wen, X. & Lu, C. Genetic engineering of the biosynthesis of glycinebetaine leads to increased tolerance of photosynthesis to salt stress in transgenic tobacco plants. Plant Mol. Biol. 66, 73 (2008).
Hibino, T. et al. Molecular cloning and functional characterization of two kinds of betaine-aldehyde dehydrogenase in betaine-accumulating mangrove Avicennia marina (Forsk.) Vierh. Plant Mol. Biol. 45, 353–363 (2001).
Fitzgerald, T. L., Waters, D. L. & Henry, R. J. Betaine aldehyde dehydrogenase in plants. Plant Biol. 11, 119–130 (2009).
Davenport, R. J. et al. The Na+ transporter AtHKT1; 1 controls retrieval of Na+ from the xylem in Arabidopsis. Plant Cell Environ. 30, 497–507 (2007).
Wu, H.-J. et al. Insights into salt tolerance from the genome of Thellungiella salsuginea. Proc. Natl Acad. Sci. USA 109, 12219–12224 (2012).
Møller, I. S. et al. Shoot Na+ exclusion and increased salinity tolerance engineered by cell type-specific alteration of Na+ transport in Arabidopsis. Plant Cell 21, 2163–2178 (2009).
Sengupta, S. et al. An actin‐depolymerizing factor from the halophyte smooth cordgrass, Spartina alterniflora (Sa ADF 2), is superior to its rice homolog (Os ADF 2) in conferring drought and salt tolerance when constitutively overexpressed in rice. Plant Biotechnol. J. 17, 188–205 (2019).
Nishijima, T., Furuhashi, M., Sakaoka, S., Morikami, A. & Tsukagoshi, H. Ectopic expression of Mesembryanthemum crystallinum sodium transporter McHKT2 provides salt stress tolerance in Arabidopsis thaliana. Biosci. Biotechnol. Biochem. 81, 2139–2144 (2017).
Chen, Y. et al. Heterologous expression of the halophyte Zoysia matrella H+-pyrophosphatase gene improved salt tolerance in Arabidopsis thaliana. Plant Physiol. Biochem. 91, 49–55 (2015).
Sun, L. et al. Co-overexpression of AVP1 and PP2A-C5 in Arabidopsis makes plants tolerant to multiple abiotic stresses. Plant Sci. 274, 271–283 (2018).
Shi, H., Lee, B.-h, Wu, S.-J. & Zhu, J.-K. Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat. Biotechnol. 21, 81–85 (2003).
Kim, K., Seo, E., Chang, S. K., Park, T. J. & Lee, S. J. Novel water filtration of saline water in the outermost layer of mangrove roots. Sci. Rep. 6, 20426 (2016).
Yuan, F., Leng, B. & Wang, B. Progress in studying salt secretion from the salt glands in recretohalophytes: how do plants secrete salt? Front. Plant Sci. 7, 977 (2016).
Han, Y. et al. Populus euphratica XTH overexpression enhances salinity tolerance by the development of leaf succulence in transgenic tobacco plants. J. Exp. Bot. 64, 4225–4238 (2013).
Krishnamurthy, P. et al. Regulation of a cytochrome P450 gene CYP94B1 by WRKY33 transcription factor controls apoplastic barrier formation in roots to confer salt tolerance. Plant Physiol. 184, 2199–2215 (2020).
Roeurn, S. et al. Suppression subtractive hybridization library construction and identification of epidermal bladder cell related genes in the common ice plant, Mesembryanthemum crystallinum L. Plant Prod. Sci. 19, 552–561 (2016).
Yuan, F. et al. A WD40-repeat protein from the Recretohalophyte limonium bicolor enhances trichome formation and salt tolerance in Arabidopsis. Front. Plant Sci. 10, 1456 (2019).
Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770 (2011).
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017).
Cantarel, B. L. et al. MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res. 18, 188–196 (2008).
Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 9, R7 (2008).
Stanke, M. et al. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 34, W435–W439 (2006).
Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644 (2011).
Conesa, A. et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676 (2005).
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
Wang, Y. et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40, e49–e49 (2012).
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).