Một quy trình nhanh chóng, không xâm lấn để đánh giá định lượng khả năng sống sót trong điều kiện hạn hán bằng cách sử dụng huỳnh quang diệp lục

Nick S. Woo1, Murray R. Badger2, Barry J. Pogson1
1Australian Research Council Centre of Excellence in Plant Energy Biology, School of Biochemistry and Molecular Biology, the Australian National University, Canberra, ACT 0200, Australia
2Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biological Sciences, the Australian National University, Canberra, ACT 0200, Australia

Tóm tắt

Tóm tắt Nền tảng

Phân tích khả năng sống sót thường được sử dụng như một phương tiện để so sánh hiệu suất của các dòng thực vật dưới điều kiện hạn hán. Tuy nhiên, việc đánh giá tình trạng nước của thực vật trong các nghiên cứu như vậy thường liên quan đến việc tách rời để ước lượng cú sốc nước, những phương pháp ước lượng không chính xác hoặc các phép đo xâm lấn như điều chỉnh thẩm thấu, ảnh hưởng đến hoặc hủy bỏ sự đánh giá tiếp theo về phản ứng của mẫu vật đối với hạn hán.

Kết quả

Bài báo này trình bày một quy trình để đánh giá nhanh chóng, giá rẻ và không xâm lấn khả năng sống sót của các cây trồng trên đất trong quá trình điều trị hạn hán. Những thay đổi trong các tham số quang hợp chính trong điều kiện thiếu nước ngày càng tăng đã được theo dõi thông qua hình ảnh huỳnh quang diệp lục và lựa chọn tham số hiệu suất tối đa của hệ thống quang hợp II (Fv/Fm) như một phương tiện đơn giản và thực tiễn nhất để theo dõi khả năng sống sót được mô tả. Tính hợp lệ của kỹ thuật này được xác minh thông qua ứng dụng với nhiều loại hình sinh thái và các dòng đột biến của Arabidopsis thaliana có khả năng chịu hạn thay đổi hoặc hiệu suất quang hợp giảm.

Từ khóa

#Hạn hán #khả năng sống sót #huỳnh quang diệp lục #<jats:italic>Arabidopsis thaliana</jats:italic> #đo không xâm lấn

Tài liệu tham khảo

Johnson N, Revenga C, Echeverria J: Managing water for people and nature. Science. 2001, 292: 1071-1072. 10.1126/science.1058821.

Somerville C, Briscoe J: Genetic engineering and water. Science. 2001, 292: 2217-10.1126/science.292.5525.2217.

Zhang JZ, Creelman RA, Zhu J-K: From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiol. 2004, 135: 615-621. 10.1104/pp.104.040295.

Saranga Y, Jiang CX, Wright RJ, Yakir D, Paterson AH: Genetic dissection of cotton physiological responses to arid conditions and their inter-relationships with productivity. Plant, Cell & Environment. 2004, 27: 263-277. 10.1111/j.1365-3040.2003.01134.x.

Vinocur B, Altman A: Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Current Opinion in Biotechnology. 2005, 16: 123-132. 10.1016/j.copbio.2005.02.001.

Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K: Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Current Opinion in Biotechnology. 2006, 17: 113-122.

Catala R, Ouyang J, Abreu IA, Hu Y, Seo H, Zhang X, Chua N-H: The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses. Plant Cell. 2007, 19: 2952-2966. 10.1105/tpc.106.049981.

Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez MM, Seki M, Hiratsu K, Ohme-Takagi M, Shinozaki K, Yamaguchi-Shinozaki K: AREB1 is a transcription activator of novel ABRE-Dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. The Plant Cell. 2005, 17: 3470-3488. 10.1105/tpc.105.035659.

Weele van der CM, Spollen WG, Sharp RE, Baskin TI: Growth of Arabidopsis thaliana seedlings under water deficit studied by control of water potential in nutrient-agar media. J Exp Bot. 2000, 51: 1555-1562. 10.1093/jexbot/51.350.1555.

Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu J-K: Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. The Plant Journal. 2006, 45: 523-539. 10.1111/j.1365-313X.2005.02593.x.

Bhatnagar-Mathur P, Vadez V, Sharma K: Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep. 2008, 27 (3): 411-424. 10.1007/s00299-007-0474-9.

Riga P, Vartanian N: Sequential expression of adaptive mechanisms is responsible for drought resistance in tobacco. Australian Journal of Plant Physiology. 1999, 26: 211-220. 10.1071/PP98094.

Passioura JB: The perils of pot experiments. Functional Plant Biology. 2006, 33: 1075-1079. 10.1071/FP06223.

Jones HG: Monitoring plant and soil water status: established and novel methods revisited and their relevance to studies of drought tolerance. J Exp Bot. 2007, 58: 119-130. 10.1093/jxb/erl118.

Poulson M, Boeger M, Donahue R: Response of photosynthesis to high light and drought for Arabidopsis thaliana grown under a UV-B enhanced light regime. Photosynthesis Research. 2006, 90: 79-90. 10.1007/s11120-006-9116-2.

Bhatnagar-Mathur P, Devi M, Reddy D, Lavanya M, Vadez V, Serraj R, Yamaguchi-Shinozaki K, Sharma K: Stress-inducible expression of AtDREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions. Plant Cell Reports. 2007, 26: 2071-2082. 10.1007/s00299-007-0406-8.

Mane SP, Vasquez-Robinet C, Sioson AA, Heath LS, Grene R: Early PLDa-mediated events in response to progressive drought stress in Arabidopsis: a transcriptome analysis. J Exp Bot. 2007, 58: 241-252. 10.1093/jxb/erl262.

Karaba A, Dixit S, Greco R, Aharoni A, Trijatmiko KR, Marsch-Martinez N, Krishnan A, Nataraja KN, Udayakumar M, Pereira A: Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proceedings of the National Academy of Sciences. 2007, 104: 15270-15275. 10.1073/pnas.0707294104.

Qin F, Kakimoto M, Sakuma Y, Maruyama K, Osakabe Y, Tran L-SP, Shinozaki K, Yamaguchi-Shinozaki K: Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. The Plant Journal. 2007, 50: 54-69. 10.1111/j.1365-313X.2007.03034.x.

Chen M, Wang Q-Y, Cheng X-G, Xu Z-S, Li L-C, Ye X-G, Xia L-Q, Ma Y-Z: GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochemical and Biophysical Research Communications. 2007, 353: 299-305. 10.1016/j.bbrc.2006.12.027.

Chaves MM: Effects of water deficits on carbon assimilation. J Exp Bot. 1991, 42: 1-16. 10.1093/jxb/42.1.1. [http://jxb.oxfordjournals.org/cgi/content/abstract/42/1/1]

Tezara W, Mitchell VJ, Driscoll SD, Lawlor DW: Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature. 1999, 401: 914-917. 10.1038/44842.

Flexas J, Medrano H: Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Ann Bot. 2002, 89: 183-189. 10.1093/aob/mcf027.

Cornic G: Drought stress inhibits photosynthesis by decreasing stomatal aperture – not by affecting ATP synthesis. Trends in Plant Science. 2000, 5: 187-188. 10.1016/S1360-1385(00)01625-3.

Oxborough K: Imaging of chlorophyll a fluorescence: theoretical and practical aspects of an emerging technique for the monitoring of photosynthetic performance. J Exp Bot. 2004, 55: 1195-1205. 10.1093/jxb/erh145.

Baker NR: Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology. 2008, 59: 89-113. 10.1146/annurev.arplant.59.032607.092759.

Schreiber U, Vidaver W, Runeckles VC, Rosen P: Chlorophyll fluorescence assay for ozone injury in intact plants. Plant Physiol. 1978, 61: 80-84. 10.1104/pp.61.1.80.

Conroy JP, Smillie RM, Kuppers M, Bevege DI, Barlow EW: Chlorophyll a fluorescence and photosynthetic and growth responses of Pinus radiata to phosphorus deficiency, drought stress, and high CO2. Plant Physiol. 1986, 81: 423-429. 10.1104/pp.81.2.423.

Lazár D: The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light. Functional Plant Biology. 2006, 33: 9-30. 10.1071/FP05095.

Oukarroum A, Strasser RJ: Phenotyping of dark and light adapted barley plants by the fast chlorophyll a fluorescence rise OJIP. South African Journal of Botany. 2004, 70: 277-283.

Strauss AJ, Krüger GHJ, Strasser RJ, Heerden PDRV: Ranking of dark chilling tolerance in soybean genotypes probed by the chlorophyll a fluorescence transient O-J-I-P. Environmental and Experimental Botany. 2006, 56: 147-157. 10.1016/j.envexpbot.2005.01.011.

Oukarroum A, Madidi SE, Schansker G, Strasser RJ: Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. Environmental and Experimental Botany. 2007, 60: 438-446. 10.1016/j.envexpbot.2007.01.002.

Omasa K, Shimazaki K-I, Aiga I, Larcher W, Onoe M: Image analysis of chlorophyll fluorescence transients for diagnosing the photosynthetic system of attached leaves. Plant Physiol. 1987, 84: 748-752. 10.1104/pp.84.3.748.

Quilliam RS, Swarbrick PJ, Scholes JD, Rolfe SA: Imaging photosynthesis in wounded leaves of Arabidopsis thaliana. J Exp Bot. 2006, 57: 55-69. 10.1093/jxb/erj039.

Baker NR, Rosenqvist E: Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot. 2004, 55: 1607-1621. 10.1093/jxb/erh196.

Savitch L, Barker-Åstrom J, Ivanov A, Hurry V, Öquist G, Huner N, Gardeström P: Cold acclimation of Arabidopsis thaliana results in incomplete recovery of photosynthetic capacity, associated with an increased reduction of the chloroplast stroma. Planta. 2001, 214: 295-303.

Ehlert B, Hincha D: Chlorophyll fluorescence imaging accurately quantifies freezing damage and cold acclimation responses in Arabidopsis leaves. Plant Methods. 2008, 4: 12-10.1186/1746-4811-4-12.

Muller-Moule P, Golan T, Niyogi KK: Ascorbate-deficient mutants of Arabidopsis grow in high light despite chronic photooxidative stress. Plant Physiol. 2004, 134: 1163-1172. 10.1104/pp.103.032375.

Maxwell K, Johnson GN: Chlorophyll fluorescence – a practical guide. J Exp Bot. 2000, 51: 659-668. 10.1093/jexbot/51.345.659.

Lawlor DW, Cornic G: Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell and Environment. 2002, 25: 275-294. 10.1046/j.0016-8025.2001.00814.x.

Kramer D, Johnson G, Kiirats O, Edwards G: New fluorescence parameters for the determination of Qa redox state and excitation energy fluxes. Photosynthesis Research. 2004, 79: 209-218. 10.1023/B:PRES.0000015391.99477.0d.

Rossel JB, Walter PB, Hendrickson L, Chow WS, Poole A, Mullineaux PM, Pogson BJ: A mutation affecting ASCORBATE PEROXIDASE 2 gene expression reveals a link between responses to high light and drought tolerance. Plant, Cell and Environment. 2006, 29: 269-281. 10.1111/j.1365-3040.2005.01419.x.

Mustilli A-C, Merlot S, Vavasseur A, Fenzi F, Giraudat J: Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell. 2002, 14: 3089-3099. 10.1105/tpc.007906.

Sakamoto W, Tamura T, Hanba-Tomita Y, Murata M: The VAR1 locus of Arabidopsis encodes a chloroplastic FtsH and is responsible for leaf variegation in the mutant alleles. Genes Cells. 2002, 7: 769-780. 10.1046/j.1365-2443.2002.00558.x.

Chen M, Jensen M, Rodermel S: The yellow variegated mutant of Arabidopsis is plastid autonomous and delayed in chloroplast biogenesis. J Hered. 1999, 90: 207-214. 10.1093/jhered/90.1.207.

Mittler R, Kim Y, Song L, Coutu J, Coutu A, Ciftci-Yilmaz S, Lee H, Stevenson B, Zhu J-K: Gain- and loss-of-function mutations in ZAT10 enhance the tolerance of plants to abiotic stress. FEBS letters. 2006, 580: 6537-6542. 10.1016/j.febslet.2006.11.002.

Sakamoto H, Maruyama K, Sakuma Y, Meshi T, Iwabuchi M, Shinozaki K, Yamaguchi-Shinozaki K: Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol. 2004, 136: 2734-2746. 10.1104/pp.104.046599.

Rossel JB, Wilson PB, Hussain D, Woo NS, Gordon MJ, Mewett OP, Howell KA, Whelan J, Kazan K, Pogson BJ: Systemic and intracellular responses to photooxidative stress in Arabidopsis. Plant Cell. 2007, 19: 4091-4110. 10.1105/tpc.106.045898.

Gray GR, Hope BJ, Qin X, Taylor BG, Whitehead CL: The characterization of photoinhibition and recovery during cold acclimation in Arabidopsis thaliana using chlorophyll fluorescence imaging. Physiologia Plantarum. 2003, 119: 365-375. 10.1034/j.1399-3054.2003.00224.x.

Rizza F, Pagani D, Stanca AM, Cattivelli L: Use of chlorophyll fluorescence to evaluate the cold acclimation and freezing tolerance of winter and spring oats. Plant Breeding. 2001, 120: 389-396. 10.1046/j.1439-0523.2001.00635.x.

Giardi MT, Cona A, Geiken B, Kuèera T, Masojídek J, Mattoo AK: Long-term drought stress induces structural and functional reorganization of photosystem II. Planta. 1996, 199: 118-125. 10.1007/BF00196888.

Hura T, Grzesiak S, Hura K, Thiemt E, Tokarz K, Wedzony M: Physiological and biochemical tools useful in drought-tolerance detection in genotypes of winter triticale: accumulation of ferulic acid correlates with drought tolerance. Annals of Botany. 2007, 100: 767-775. 10.1093/aob/mcm162.

Flexas J, Bota J, Escalona JM, Sampol B, Medrano H: Effects of drought on photosynthesis in grapevines under field conditions: an evaluation of stomatal and mesophyll limitations. Functional Plant Biology. 2002, 29: 461-471. 10.1071/PP01119.

Flexas J, Escalona JM, Medrano H: Down-regulation of photosynthesis by drought under field conditions in grapevine leaves. Functional Plant Biology. 1998, 25: 893-900. 10.1071/PP98054.

Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E: Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proceedings of the National Academy of Sciences. 2007, 104: 19631-19636. 10.1073/pnas.0709453104.

Öquist G, Chow WS, Anderson JM: Photoinhibition of photosynthesis represents a mechanism for the long-term regulation of photosystem II. Planta. 1992, 186: 450-460. 10.1007/BF00195327.

Cornic G, Gouallec JL, Briantais JM, Hodges M: Effect of dehydration and high light on photosynthesis of two C3 plants (Phaseolus vulgaris L. and Elatostema repens (Lour.) Hall f.). Planta. 1989, 177: 84-90. 10.1007/BF00392157.

Hoagland DR, Arnon DA: The water-culture method of growing plants without soil. California Agricultural Experiment Station Circular. 1938, 347: 1-32.