A randomized clinical control study on the efficacy of three-dimensional upper limb robotic exoskeleton training in chronic stroke

Journal of NeuroEngineering and Rehabilitation - Tập 19 - Trang 1-14 - 2022
Antonio Frisoli1, Michele Barsotti1, Edoardo Sotgiu2, Giuseppe Lamola3, Caterina Procopio1, Carmelo Chisari3
1Institute of Mechanical Intelligence, Scuola Superiore Sant’Anna of Pisa, PERCRO Lab, Pisa, Italy
2INL-International Iberian Nanotechnology Laboratory, Braga, Portugal
3University Hospital of Pisa, Pisa, Italy

Tóm tắt

Although robotics assisted rehabilitation has proven to be effective in stroke rehabilitation, a limited functional improvements in Activities of Daily Life has been also observed after the administration of robotic training. To this aim in this study we compare the efficacy in terms of both clinical and functional outcomes of a robotic training performed with a multi-joint functional exoskeleton in goal-oriented exercises compared to a conventional physical therapy program, equally matched in terms of intensity and time. As a secondary goal of the study, it was assessed the capability of kinesiologic measurements—extracted by the exoskeleton robotic system—of predicting the rehabilitation outcomes using a set of robotic biomarkers collected at the baseline. A parallel-group randomized clinical trial was conducted within a group of 26 chronic post-stroke patients. Patients were randomly assigned to two groups receiving robotic or manual therapy. The primary outcome was the change in score on the upper extremity section of the Fugl-Meyer Assessment (FMA) scale. As secondary outcome a specifically designed bimanual functional scale, Bimanual Activity Test (BAT), was used for upper limb functional evaluation. Two robotic performance indices were extracted with the purpose of monitoring the recovery process and investigating the interrelationship between pre-treatment robotic biomarkers and post-treatment clinical improvement in the robotic group. A significant clinical and functional improvements in both groups (p < 0.01) was reported. More in detail a significantly higher improvement of the robotic group was observed in the proximal portion of the FMA (p < 0.05) and in the reduction of time needed for accomplishing the tasks of the BAT (p < 0.01). The multilinear-regression analysis pointed out a significant correlation between robotic biomarkers at the baseline and change in FMA score (R2 = 0.91, p < 0.05), suggesting their potential ability of predicting clinical outcomes. Exoskeleton-based robotic upper limb treatment might lead to better functional outcomes, if compared to manual physical therapy. The extracted robotic performance could represent predictive indices of the recovery of the upper limb. These results are promising for their potential exploitation in implementing personalized robotic therapy. Clinical Trial Registration clinicaltrials.gov, NCT03319992 Unique Protocol ID: RH-UL-LEXOS-10. Registered 20.10.2017, https://clinicaltrials.gov/ct2/show/NCT03319992

Tài liệu tham khảo

Cauraugh JH, Lodha N, Naik SK, Summers JJ. Bilateral movement training and stroke motor recovery progress: a structured review and meta-analysis. Hum Mov Sci. 2010;29(5):853–70. Takeuchi N, Izumi S. Rehabilitation with poststroke motor recovery: a review with a focus on neural plasticity. Stroke Res Treat [Internet]. 2013;2013. Burdet E, Franklin DW, Milner TE. Human robotics: neuromechanics and motor control. MIT Press; 2013. Cameirão MS, Badia SBI, Duarte E, Frisoli A, Verschure PFMJ. The combined impact of virtual reality neurorehabilitation and its interfaces on upper extremity functional recovery in patients with chronic stroke. Stroke. 2012;43(10):2720–8. Bertani R, Melegari C, De Cola MC, Bramanti A, Bramanti P, Calabrò RS. Effects of robot-assisted upper limb rehabilitation in stroke patients: a systematic review with meta-analysis. Neurol Sci. 2017;38(9):1561–9. Mehrholz J, Pohl M, Platz T, Kugler J, Elsner B. Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Libr. 2015; Rodgers H, Bosomworth H, Krebs HI, van Wijck F, Howel D, Wilson N, et al. Robot assisted training for the upper limb after stroke (RATULS): a multicentre randomised controlled trial. Lancet. 2019;394(10192):51–62. Frisoli A, Solazzi M, Loconsole C, Barsotti M. New generation emerging technologies for neurorehabilitation and motor assistance. Acta Myol. 2016;35(3):141. Reinkensmeyer DJ, Wolbrecht ET, Chan V, Chou C, Cramer SC, Bobrow JE. Comparison of three-dimensional, assist-as-needed robotic arm/hand movement training provided with Pneu-WREX to conventional tabletop therapy after chronic stroke. Am J Phys Med Rehabil. 2012;91(11 Suppl 3):S232–41. Klamroth-Marganska V, Blanco J, Campen K, Curt A, Dietz V, Ettlin T, et al. Three-dimensional, task-specific robot therapy of the arm after stroke: a multicentre, parallel-group randomised trial. Lancet Neurol. 2014;13(2):159–66. Frisoli A, Procopio C, Chisari C, Creatini I, Bonfiglio L, Bergamasco M, et al. Positive effects of robotic exoskeleton training of upper limb reaching movements after stroke. J Neuroeng Rehabil. 2012;9(1):36. Lee S, Park G, Cho D, Kim H, Lee J, reports SK-S, et al. Comparisons between end-effector and exoskeleton rehabilitation robots regarding upper extremity function among chronic stroke patients with moderate-to. nature.com [Internet]. Milot M-H, Spencer SJ, Chan V, Allington JP, Klein J, Chou C, et al. A crossover pilot study evaluating the functional outcomes of two different types of robotic movement training in chronic stroke survivors using the arm exoskeleton BONES. J Neuroeng Rehabil. 2013;10(1):112. Jeffers MS, Karthikeyan S, Gomez-Smith M, Gasinzigwa S, Achenbach J, Feiten A, et al. Does stroke rehabilitation really Matter? Part B: an algorithm for prescribing an effective intensity of rehabilitation. Neurorehabil Neural Repair. 2018;32(1):73–83. Stinear CM. Prediction of motor recovery after stroke: advances in biomarkers. Lancet Neurol. 2017;16(10):826–36. Boyd LA, Hayward KS, Ward NS, Stinear CM, Rosso C, Fisher RJ, et al. Biomarkers of stroke recovery: consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable. Int J Stroke. 2017;12(5):480–93. Krebs HI, Peltz AR, Berkowe J, Angacian G, Cortes M, Edwards D. Robotic biomarkers in RETT Syndrome: Evaluating stiffness. In: 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob). IEEE; 2016. p. 680–4. Patel S, Park H, Bonato P, Chan L, Rodgers M. A review of wearable sensors and systems with application in rehabilitation. J Neuroeng Rehabil. 2012;9(1):21. Krebs HI, Krams M, Agrafiotis DK, DiBernardo A, Chavez JC, Littman GS, et al. Robotic measurement of arm movements after stroke establishes biomarkers of motor recovery. Stroke. 2014;45(1):200–4. Mostafavi S, Mousavi P, Dukelow S, Scott S. Robot-based assessment of motor and proprioceptive function identifies biomarkers for prediction of functional independence measures. J Neuroeng Rehabil [Internet]. 2015; 12(1). Douiri A, Grace J, Sarker S, Tilling K, McKevitt C, Wolfe C, et al. Patient-specific prediction of functional recovery after stroke. Int J Stroke [Internet]. 2017;12(5):539–48. Harvey R. Predictors of functional outcome following stroke. Phys Med Rehabil Clin N Am [Internet]. 2015;26(4):583–98. Kim J, Shin W. How to do random allocation (randomization). Clin Orthop Surg. 2014;6(1):103. Barreca S, Wolf SL, Fasoli S, Bohannon R. Treatment interventions for the paretic upper limb of stroke survivors: a critical review. Neurorehabil Neural Repair. 2003;17(4):220–6. Sallés L, Martín-Casas P, Gironès X, Durà MJ, Lafuente JV, Perfetti C. A neurocognitive approach for recovering upper extremity movement following subacute stroke: a randomized controlled pilot study. J Phys Ther Sci [Internet]. 2017;29(4):665. Frisoli A, Rocchi F, Marcheschi S, Dettori A, Salsedo F, Bergamasco M. A new force-feedback arm exoskeleton for haptic interaction in virtual environments. In: Eurohaptics Conference, 2005 and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2005 World Haptics 2005 First Joint. 2005. p. 195–201. Frisoli A, Sotgiu E, Procopio C, Bergamasco M, Rossi B, Chisari C. Design and implementation of a training strategy in chronic stroke with an arm robotic exoskeleton. In: 2011 IEEE International Conference on Rehabilitation Robotics. IEEE; 2011. p. 1–8. Rohrer B, Fasoli S, Krebs HI, Hughes R, Volpe B, Frontera WR, et al. Movement smoothness changes during stroke recovery. J Neurosci. 2002;22(18):8297. Saville DJ. Multiple comparison procedures: the practical solution. Am Stat. 1990;44(2):174–80. Schaefer SY, Patterson CB, Lang CE. Transfer of training between distinct motor tasks after stroke: implications for task- specific approaches to upper extremity neurorehabilitation. Neurorehabil Neural Repair. 2013;27(7):602. van Kordelaar J, van Wegen E, Kwakkel G. Impact of time on quality of motor control of the paretic upper limb after stroke. Arch Phys Med Rehabil [Internet]. 2014;95(2):338–44. Nam HS, Koh S, Kim YJ, Beom J, Lee WH, Lee S-U, et al. Biomechanical reactions of exoskeleton neurorehabilitation robots in spastic elbows and wrists. IEEE Trans Neural Syst Rehabil Eng. 2017;25:2196. Ellis MD, Lan Y, Yao J, Dewald JPA. Robotic quantification of upper extremity loss of independent joint control or flexion synergy in individuals with hemiparetic stroke: a review of paradigms addressing the effects of shoulder abduction loading. J Neuroeng Rehabil. 2016;13(1):95. Dukelow SP, Herter TM, Bagg SD, Scott SH. The independence of deficits in position sense and visually guided reaching following stroke. J Neuroeng Rehabil. 2012;9(1):72. Roh J, Rymer W, Beer R. Evidence for altered upper extremity muscle synergies in chronic stroke survivors with mild and moderate impairment. Front Hum Neurosci [Internet]. 2015;9(FEB). Rosenthal O, Wing AM, Wyatt JL, Punt D, Brownless B, Ko-Ko C, et al. Boosting robot-assisted rehabilitation of stroke hemiparesis by individualized selection of upper limb movements—a pilot study. J Neuroeng Rehabil. 2019;16(1):42. Semrau JA, Herter TM, Scott SH, Dukelow SP. Examining differences in patterns of sensory and motor recovery after stroke with robotics. Stroke. 2015;46(12):3459–69.