A random walk approach to estimate the confinement of α-particle emitters in nanoparticles for targeted radionuclide therapy

Springer Science and Business Media LLC - Tập 3 - Trang 1-26 - 2018
Uwe Holzwarth1, Isaac Ojea Jimenez1, Luigi Calzolai1
1European Commission Joint Research Centre, Ispra, Italy

Tóm tắt

Targeted radionuclide therapy is a highly efficient but still underused treatment modality for various types of cancers that uses so far mainly readily available β-emitting radionuclides. By using α-particle emitters several shortcomings due to hypoxia, cell proliferation and in the selected treatment of small volumes such as micrometastasis could be overcome. To enable efficient targeting longer-lived α-particle emitters are required. These are the starting point of decay chains emitting several α-particles delivering extremely high radiation doses into small treatment volumes. However, as a consequence of the α-decay the daughter nuclides receive high recoil energies that cannot be managed by chemical radiolabelling techniques. By safe encapsulation of all α-emitters in the decay chain in properly sized nanocarriers their release may be avoided. The encapsulation of small core nanoparticles loaded with the radionuclide in a shell structure that safely confines the recoiling daughter nuclides promises good tumour targeting, penetration and uptake, provided these nanostructures can be kept small enough. A model for spherical nanoparticles is proposed that allows an estimate of the fraction of recoiling α-particle emitters that may escape from the nanoparticles as a function of their size. The model treats the recoil ranges of the daughter nuclides as approximately equidistant steps with arbitrary orientation in a three-dimensional random walk model. The presented model allows an estimate of the fraction of α-particles that are emitted from outside the nanoparticle when its size is reduced below the radius that guarantees complete confinement of all radioactive daughter nuclides. Smaller nanoparticle size with reduced retention of daughter radionuclides might be tolerated when the effects can be compensated by fast internalisation of the nanoparticles by the target cells.

Tài liệu tham khảo

Aghevlian S, Boyle AJ, Reilly RM. Radioimmunotherapy of cancer with high linear energy transfer (LET) radiation delivered by radionuclides emitting α-particles or Auger electrons. Advanced Drug Delivery Reviews 2017;109:102-118. Allen BJ. Systemic targeted alpha radiotherapy for cancer. J. Biomed. Phys. Eng. 2013;3:67–80. Allen BJ. A comparative evaluation of Ac225 vs Bi213 as therapeutic radioisotopes for targeted alpha therapy for cancer. Australias Phys. Eng. Sci. Med. 2017;40:369–76. Allen BJ, Singla AA, Rizvi SM, Graham P, Bruchertseifer F, Apostolidis C, Morgenstern A. Analysis of patient survival in a Phase I trial of systemic targeted α-therapy for metastatic melanoma. Immunotherapy 2011;3:1041-1050. Andersson H, Cederkrantz E, Bäck T, Divgi C, Elgqvist J, Himmelman J, Horvath G, Jacobsson L, Jensen H, Lindegren S, Palm S, Hultborn R. Intraperitoneal α-Particle Radioimmunotherapy of Ovarian Cancer Patients: Pharmacokinetics and Dosimetry of 211At-MX35 F(ab')2 – A Phase I Study. J. Nucl. Med. 2009;50:1153-1160. Apostolidis C, Molinet R, McGinley J, Abbas K, Möllenbeck J, Morgenstern A. Cyclotron production of Ac-225 for targeted alpha therapy. Appl. Radiat. Isot. 2005;62:383–7. Bodelt-Milin C, Ferrer L, Pallardy A, Eugène T, Rauscher A, Faivre-Chauvet A, Barbet J, Kraeber-Bodéré F. Radioimmunotherapy of B-cell non Hodgkin's lymphoma. Front Oncol. 2013;3, Article no:177. Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int. J. Nanomed. 2015;10:975–99. Chan HS, de Blois E, Konijnenberg MW, Morgenstern A, Bruchertseifer F, Norenberg JP, Verzijlbergen FJ, de Jong M, Breeman WAP. Optimizing labelling conditions of 213Bi-DOTATATE for preclinical applications of peptide receptor targeted alpha therapy. EJNMMI Radiopharmacy and Chemistry. 2016;1:9. Chang M, Seideman J, Sofou S. Enhanced loading efficiency and retention of 225Ac in rigid liposomes for potential targeted therapy of micrometastases. Bioconj. Chem. 2008;19:1274–82. Cordier D, Forrer F, Bruchertseifer F, Morgenstern A, Apostolidis C, Good S, Müller-Brand J, Mäcke H, Reubi JC, Merlo A. Targeted alpha-radionuclide therapy of functionally critically located gliomas with 213Bi-DOTA-[Thi8,Met(O2)11]-substance P: a pilot trial. Eur. J. Nucl. Med. Mol. Imaging. 2010;37:1335–44. Cordier D, Krolicki L, Morgenstern A, Merlo A. Targeted radiolabeled compounds in glioma therapy. Semin. Nucl. Med. 2016;46:243–9. Couturier O, Supiot S, Degraef-Mougin M, Faivre-Chauvet A, Carlier T, Chatal J-F, Davodeau F, Cherel M. Cancer radioimmunotherapy with alpha-emitting nuclides. Eur. J. Nucl. Med. Mol. Imaging. 2005;32:601–14. de Kruijff RM, Dorst K, Thijssen L, Morgenstern A, Bruchertseifer F, Lathouwers D, Wolterbeck HT, Denkova AG. Improved 225Ac daughter retention in InPO4 containing polymersomes. Appl. Radiat. Isot. 2017;128:183–9. de Kruijff RM, Wolterbeck HT, Denkova AG. A critical review of alpha radionuclide therapy – ow to deal with recoiling daughters. Pharmaceuticals. 2015;8:321–36. Dutka J. On the problem of random flights. Arch. History Exact Sci. 1985;32:351–75. Elgqvist J, Frost S, Pouget J-P, Albertsson P. The potential and hurdles of targeted alpha-therapy – clinical trials and beyond. Frontiers in Oncology. 2014;3:#324. https://doi.org/10.3389/fonc.2013.00324. Goldsmith SJ. Radioimmunotherapy of lymphoma: Bexxar and Zevalin. Seminar. Nucl. Med. 2010;40:122–35. Greaves G, Hinks JA, Busby P, Mellors NJ, Ilinov A, Kuronen A, Nordlund K, Donnelly SE. Enhanced sputtering yields from single-ion impacts on gold nanorods. Phys. Rev. Lett. 2013;111:065504. Haberkorn U, Giesel F, Morgenstern A, Kratochwil C. The Future of Radioligand Therapy: α, β, or Both? J. Nucl. Med. 2017;58:1017-1018. Heeger S, Moldenhauer G, Egerer G, Welsch H, Martin S, Nikula T, Apostolidis C, Brechbiel MW, Ho AD, Haas R. Alpha-radioimmunotherapy ofB-lineage non-Hodgkin’s lymphoma using 213Bi-labelled anti-CD19-and anti-CD20-CHX-A”-DTPA conjugates. - The 225th ACS National Meeting, New Orleans, LA, March 23-27, 2003 - Abstract Paper Am. Chem. Soc. 2003;225:U261. http://oasys2.confex.com/acs/225nm/techprogram/P613172.HTM Henriksen G, Schoultz BW, Michaelsen TE, Bruland OS, Larsen RH. Sterically stabilized liposomes as a carrier for alpha-emitting radium and actinium radionuclides. Nucl. Med.Biol. 2004;31:441–9. Holzwarth U, Bellido E, Dalmiglio M, Kozempel J, Cotogno G, Gibson N. 7Be-recoil radiolabelling of industrially manufactured silica nanoparticles. J. Nanopart. Res. 2014;16:2574. Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. International Journal of Nanomedicine. 2006;1:297–315. Intaglietta M, Silverman NR, Tompkins WR. Capillary flow velocity measurements in vivoand insitu by television methods. Microvasc. Res. 1975;10:165–79. International Atomic Energy Agency: IAEA's Nuclear Data Services. https://www-nds.iaea.org./ (2016). Accessed Oct 2017. Jaggi JS, Kappel BJ, McDevitt MR, Sgouros G, Flombaum CD, Cabassa C, Scheinberg DA. Efforts to control the errant products of a targeted in vivo generator. Cancer Research. 2005;65:4888–95. Järvi TT, Nordlund K. Sputtering of freestanding metal nanocrystals. Nucl. Instr. Meth. Phys. Res. B. 2012;272:66–9. Johnson NL. Paths and chains of random straight-line segments. Technometrics. 1966;8:303–17. Jonasdottir TJ, Fisher DR, Borrebaek J, Bruland OS, Larsen RH. First in vivo evaluation of liposome-encapsulated 223Ra as a potential alpha-particle-emitting cancer therapeutic agent. Anticancer Res. 2006;26:2841–8. Kassis AI. Therapeutic Radionuclides: Biophysical and Radiological Principles. Sem. Nucl. Med. 2008;38:358–66. Kim YS, Brechbiel MW. An overview of targeted alpha therapy. Tumor Biol. 2012;33:573–90. Kluetz PG, Pierce W, Maher VE, Zhang H, Tang S, Song P, Liu Q, Haber HT, Leutzinger EE, Al-Hakim A, Chen W, Palmby T, Alebachew E, Sridhara R, Ibrahim A, Justice R, Pazdur R. Radium Ra 223 dichloride injection: U.S. Food and Drug Administration drug approval summary. Clin Cancer Res. 2014;20:9–14. Kozempel J, Vlk M, Málková E, Bajzíková A, Bárta J, Santos-Oliveira R, Malta Rossi A. Prospective carriers of 223Ra for targeted alpha particle therapy. J. Radioanal. Nucl. Chem. 2015;304:443–7. Kratochwil C, Bruchertseifer F, Giesel FL, Weis M, Verburg FA, Mottaghy F, Klopka K, Apostolidids C, Haberkorn U, Morgenstern A. 225Ac-PSMA-617 for PSMA-targeted α-radiation therapy of metastatic castration-resistant prostate cancer. J. Nucl. Med. 2016;57:1941-1944. Kratochwil C, Geisel FL, Bruchertseifer F, Mier W, Apostolidis C, Boll R, Murphy K, Haberkorn U, Morgenstern A. 213Bi-DOTATOC receptor-targeted alpha-radionuclide therapy induces remission in neuroendocrine tumours refractory to beta radiation: a first-in-human experience. Eur. J. Nucl. Med. Mol. Imaging. 2014;41:2106–19. Kreyling WG, Holzwarth U, Haberl N, Kozempel J, Hirn S, Wenk A, Schleh C, Schäffler M, Lipka J, Semmler-Behnke M, Gibson N. Quantitative biokinetics of titanium dioxide nanoparticles after intravenous injection in rats: Part 1. Nanotoxicology. 2017;11:434–42. Magill J, Pfennig G, Galy J. Karlsruher Nuklidkarte. 7th ed. Germany: Haberbeck GmbH; 2006. Mathematics (2016) https://math.stackexchange.com/questions/103142/expected-value-of-random-walk. Last accessed 16 Mar 2018 McDevitt MR, Ma D, Lai LT, Simon J, Borchardt P, Frank RK. Wu K, Pellegrini V, Curcio MJ, Miederer M, Bander NH, Scheinberg DA. Tumour therapy with targeted atomic nanogenerators. Science. 2001;294:1537–40. McLaughlin MF, Woodward J, Boll RA, Rondinone AJ, Mirzadeh S, Robertson JD. Gold-coated lanthanide phosphate nanoparticles for an 225Ac in vivo alpha generator. Radiochimica Acta. 2013;101:595–600. Ménard-Moyon C, Venturelli E, Fabbro C, Samori C, Da Ros T, Kostarelos K, Prato M, Bianco A. The alluring potential of functionalized carbon nanotubes in drug discovery. Expert Opinion on Drug Discovery. 2010;5:691–707. Meredith RF, Torgue J, Azure MT, Shen S, Saddekni S, Banaga E, Carlise R, Bunch P, Yoder D, Alvarez R. Pharmacokinetics and Imaging of 212Pb-TCMC-Trastuzumab After Intraperitoneal Administration in Ovarian Cancer Patients. Cancer Biotherapy and Radiopharmaceuticals. 2014;29:12–7. Mokhodoeva O, Vlk M, Málková E, Kukleva E, Mičcolová P, Štamberg K, Šlouf M, Dzhenloda R, Kozempel J. Study of 223Ra uptake mechanism by Fe3O4 nanoparticles: towards new prospective theranostic SPIONs. J. Nanopart. Res. 2016;18:#301. Munaweera I, Koneru B, Shi Y, Di Pasqua AJ, Balkus KJ. Chemoradiotherapeutic wrinkled mesoporous silica nanoparticles for use in cancer therapy. APL Mater. 2014;2:#113315. Piotrowska A, Leszczuk E, Bruchertseifer F, Morgenstern A, Bilewicz A. Functionalised NaA nanozeolites labelled with 224,225Ra for targeted alpha therapy. J. Nanopart. Res. 2013;15:2082–7. Piotrowska A, Męczyńska-Wielgosz S, Majkowska-Pilip A, Koźmiński P, Wόjciuk G, Cędrowska E, Bruchertseifer F, Morgensetern A, Kruszewski M, Bilewicz A. Nanozeolite bioconjugates labelled with 223Ra for targeted alpha therapy. Nucl. Med. Biol. 2017;47:10–8. Podgoršak EB. Radiation Physics for Medical Physicists. Springer, Berlin – Heidelberg – New York: Springer; 2006. Pöppel TD, Andreeff M, Becherer A, Bockisch A, Fricke E, Geworski L, Heinzel A, Krause BJ, Krause T, Mitterhauser M, Scheidhauer K, Schenck M, Sonnenschein W, Gabriel M. Radionuklidtherapie von Knochenmetastasen mittels Radium-223 – DGN-Handlungsempfehlung. Nuklearmedizin. 2016;5:177–86. Puri A, Loomis K, Smith B, Lee JH, Yavlovich A, Heldman E, Blumenthal R. Lipid-Based Nanoparticles as Pharmaceutical Drug Carriers: From Concepts to Clinic. Crit. Rev. Ther. Drug Carrier Syst. 2009;26:523–80. Rayleigh L. On the problem of random vibrations, and of random flights in one, two and three dimensions. The London, Edinburgh, and Dublin Philosophical Magazine. Series 6. 1919;37:321–47. Richard P. In: Baum, editor. Therapeutic Nuclear Medicine. Springer, Berlin and Heidelberg: Springer; 2014. Rosenblat TL, McDevitt MR, Mulford DA, Pandit-Taskar N, Divgi CR, Panageas KS, Heaney ML, Chanel S, Morgenstern A, Sgouros G, Larson SM, Scheinberg DA, Juric JS. Sequential Cytarabine and α-Particle Immunotherapy with Bismuth-213-Lintuzumab (HuM195) for Acute Myeloid Leukemia. Clin. Cancer Res. 2010;16:5303-5311. Ruenraroengsak P, Cook JM, Florence AT. Nanosystem drug targeting: Facing up to complex realities. J. Controlled Release. 2010;141:265–76. Seidl C. Radioimmunotherapy with α-particle-emitting radionuclides. Immunotherapy 2014;6:431-458. Sofou S, Kappel BJ, Jaggi JS, Devitt MR, Scheinberg DA, Sgouros G. Enhanced retention of the α-particle-emitting daughters of Actinium-225 by liposome carriers. Bioconjugates Chemistry. 2007;18:2061–7. Sofou S, Thomas JL, Lin HY, McDevitt MR, Scheinberg DA, Sgouros G. Engineered Liposomes for Potential α-Particle Therapy of Metastatic Cancer. J Nucl Med. 2004;45:253–260. Thijssen L, Schaart DR, de Vries D, Morgenstern A, Bruchertseifer F, Denkova AG. Polymersomes as nano-carriers to retain harmful recoil nuclides in alpha radionuclide therapy: a feasibility study. Radiochimica Acta. 2012;100:473–82. Vasiliev AN, Severin A, Lapshina E, Chernykh E, Ermolaev S, Kalmykov S. Hydroxyapatite particles as carriers for 223Ra. J. Radioanal. Nucl. Chem. 2016;311:1503–9. Vigderman L, Zubarev ER. Therapeutic platforms based on gold nanoparticles and their covalent conjugates with drug molecules. Adv. Drug Delivery Reviews. 2013;65:663–76. Wang G, de Kruijff RM, Rol A, Thijssen L, Mendes E, Morgenstern A, Bruchertseifer F, Stuart MCA, Wolterbeek HT, Denkova AG. Retention studies of recoiling daughter nuclides of 225Ac in polymer vesicles. Appl. Radiat. Isot. 2014;85:45–53. Weidner JW, Mashnik SG, John KD, Ballard B, Birnbaum ER, Bitteker LJ, Couture A, Fassbender ME, Goff GS, Gritzo R, Hemez FM, Runde W, Ullmann JL, Wolfsberg LE, Nortier FM. 225Ac and 223Ra production via 800 MeV proton irradiation of natural thorium targets. Appl Radiat Isot. 2012;70:2590–5. Woodward J, Kennel SJ, Stuckey A, Osborne D, Wall J, Rondinone AJ, Standaert RF, Mirzadeh S. LaPO4 nanoparticles doped with actinium-225 that partially sequester daughter radionuclides. Bioconj. Chem. 2011;22:766–76. Zalutsky MR, Reardon DA, Akabani G, Coleman RE, Friedman AH, Friedman HS, McLendon RE, Wong TZ, Bigner DD. Clinical Experience with α-Particle–Emitting 211At: Treatment of Recurrent Brain Tumor Patients with 211At-Labeled Chimeric Antitenascin Monoclonal Antibody 81C6. J. Nucl. Med. 2008;49:30–8. Zhu C, Bandekar A, Sempkowski M, Banerjee SR, Pomper MG, Bruchertseifer F, Morgenstern A, Sofou S. Nanoconjugation of PSMA-targeting ligands enhances perinuclear localization and improves efficacy of delivered alpha-particle emitters against tumour endothelial analogues. Molecular Cancer Therapeutics. 2016;15:106–13. Ziegler JF, Ziegler MD and Biersack JP (2013) SRIM, The Stopping and Range of Ions in Matter, Version 2013.00, http://www.srim.org/ Zimmermann S, Urbassek HM. Sputtering of nanoparticles: Molecular dynamics study of Au impact on 20 nm sized Au nanoparticles. Int. J. Mass Spectrometry. 2008;272:91–7.