A protein knockdown strategy to study the function of β-catenin in tumorigenesis
Tóm tắt
The Wnt signaling pathway plays critical roles in cell proliferation and cell fate determination at many stages of development. A critical downstream target of Wnt signaling is the cytosolic β-catenin, which is stabilized upon Wnt activation and promotes transcription of a variety of target genes including c-myc and cyclin D. Aberrant Wnt signaling, which results from mutations of either β-catenin or adenomatous polyposis coli (APC), renders β-catenin resistant to degradation, and has been associated with multiple types of human cancers. A protein knockdown strategy was designed to reduce the cytosolic β-catenin levels through accelerating its turnover rate. By engineering a chimeric protein with the β-catenin binding domain of E-cadherin fused to βTrCP ubiquitin-protein ligase, the stable β-catenin mutant was recruited to the cellular SCF (S kp1, C ullin 1, and F-box-containing substrate receptor) ubiquitination machinery for ubiquitination and degradation. The DLD1 colon cancer cells express wild type β-catenin at abnormally high levels due to loss of APC. Remarkably, conditional expression of βTrCP-E-cadherin under the control of a tetracycline-repressive promoter in DLD1 cells selectively knocked down the cytosolic, but not membrane-associated subpopulation of β-catenin. As a result, DLD1 cells were impaired in their growth and clonogenic ability in vitro, and lost their tumorigenic potential in nude mice. We have designed a novel approach to induce degradation of stabilized/mutated β-catenin. Our results suggest that a high concentration of cytoplasmic β-catenin is critical for the growth of colorectal tumor cells. The protein knockdown strategy can be utilized not only as a novel method to dissect the role of oncoproteins in tumorigenesis, but also as a unique tool to delineate the function of a subpopulation of proteins localized to a specific subcellular compartment.
Tài liệu tham khảo
Wodarz A, Nusse R: Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol. 1998, 14: 59-88. 10.1146/annurev.cellbio.14.1.59
Nusse R, Varmus HE: Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell. 1982, 31: 99-109.
Polakis P: Wnt signaling and cancer. Genes Dev. 2000, 14: 1837-51.
Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, Kinzler KW: Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science. 1997, 275: 1787-90. 10.1126/science.275.5307.1787
He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW: Identification of c-MYC as a target of the APC pathway. Science. 1998, 281: 1509-12. 10.1126/science.281.5382.1509
Tetsu O, McCormick F: Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature. 1999, 398: 422-6. 10.1038/18884
Shtutman M, Zhurinsky J, Simcha I, Albanese C, D'Amico M, Pestell R, Ben-Ze'ev A: The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci U S A. 1999, 96: 5522-7. 10.1073/pnas.96.10.5522
Behrens J, Birchmeier W: Cell-cell adhesion in invasion and metastasis of carcinomas. Cancer Treat Res. 1994, 71: 251-66.
Perl AK, Wilgenbus P, Dahl U, Semb H, Christofori G: A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature. 1998, 392: 190-3. 10.1038/32433
Hochstrasser M: Ubiquitin-dependent protein degradation. Annu Rev Genet. 1996, 30: 405-39. 10.1146/annurev.genet.30.1.405
Deshaies RJ: SCF and Cullin/Ring H2-based ubiquitin ligases. Annu Rev Cell Dev Biol. 1999, 15: 435-67. 10.1146/annurev.cellbio.15.1.435
Yaron A, Hatzubai A, Davis M, Lavon I, Amit S, Manning AM, Andersen JS, Mann M, Mercurio F, Ben-Neriah Y: Identification of the receptor component of the IkappaBalpha-ubiquitin ligase. Nature. 1998, 396: 590-4. 10.1038/25159
JT Winston, Strack P, Beer-Romero P, Chu CY, Elledge SJ, Harper JW: The SCFbeta-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IkappaBalpha and beta-catenin and stimulates IkappaBalpha ubiquitination in vitro. Genes Dev. 1999, 13: 270-83.
Tan P, Fuchs SY, Chen A, Wu K, Gomez C, Ronai Z, Pan ZQ: Recruitment of a ROC1-CUL1 ubiquitin ligase by Skp1 and HOS to catalyze the ubiquitination of I kappa B alpha. Mol Cell. 1999, 3: 527-33.
Latres E, Chiaur DS, Pagano M: The human F box protein beta-Trcp associates with the Cul1/Skp1 complex and regulates the stability of beta-catenin. Oncogene. 1999, 18: 849-54. 10.1038/sj.onc.1202653
Zhou P, Bogacki R, McReynolds L, Howley PM: Harnessing the ubiquitination machinery to target the degradation of specific cellular proteins. Mol Cell. 2000, 6: 751-6.
Rubinfeld B, Robbins P, El-Gamil M, Albert I, Porfiri E, Polakis P: Stabilization of beta-catenin by genetic defects in melanoma cell lines. Science. 1997, 275: 1790-2. 10.1126/science.275.5307.1790
van de Wetering M, Cavallo R, Dooijes D, van Beest M, van Es J, Loureiro J, Ypma A, Hursh D, Jones T, Bejsovec A: Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell. 1997, 88: 789-99.
Yu J, Zhang L, Hwang PM, Rago C, Kinzler KW, Vogelstein B: Identification and classification of p53-regulated genes. Proc Natl Acad Sci U S A. 1999, 96: 14517-22. 10.1073/pnas.96.25.14517
Satoh S, Daigo Y, Furukawa Y, Kato T, Miwa N, Nishiwaki T, Kawasoe T, Ishiguro H, Fujita M, Tokino T: AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1. Nat Genet. 2000, 24: 245-50. 10.1038/73448
Hsu W, Shakya R, Costantini F: Impaired mammary gland and lymphoid development caused by inducible expression of Axin in transgenic mice. J Cell Biol. 2001, 155: 1055-64. 10.1083/jcb.200107066
Morin PJ, Vogelstein B, Kinzler KW: Apoptosis and APC in colorectal tumorigenesis. Proc Natl Acad Sci U S A. 1996, 93: 7950-4. 10.1073/pnas.93.15.7950
Shih IM, Yu J, He TC, Vogelstein B, Kinzler KW: The beta-catenin binding domain of adenomatous polyposis coli is sufficient for tumor suppression. Cancer Res. 2000, 60: 1671-6.
Neo SY, Zhang Y, Yaw LP, Li P, Lin SC: Axin-induced apoptosis depends on the extent of its JNK activation and its ability to down-regulate beta-catenin levels. Biochem Biophys Res Commun. 2000, 272: 144-50. 10.1006/bbrc.2000.2751
van de Wetering M, Sancho E, Verweij C, de Lau W, Oving I, Hurlstone A, van der Horn K, Batlle E, Coudreuse D, Haramis AP: The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell. 2002, 111: 241-50.
Xu L, Corcoran RB, Welsh JW, Pennica D, Levine AJ: WISP-1 is a Wnt-1- and beta-catenin-responsive oncogene. Genes Dev. 2000, 14: 585-95.
Kioussi C, Briata P, Baek SH, Rose DW, Hamblet NS, Herman T, Ohgi KA, Lin C, Gleiberman A, Wang J: Identification of a Wnt/Dvl/beta-Catenin --> Pitx2 pathway mediating cell-type-specific proliferation during development. Cell. 2002, 111: 673-85.
Davis M, Hatzubai A, Andersen JS, Ben-Shushan E, Fisher GZ, Yaron A, Bauskin A, Mercurio F, Mann M, Ben-Neriah Y: Pseudosubstrate regulation of the SCF([beta]-TrCP) ubiquitin ligase by hnRNP-U. Genes Dev. 2002, 16: 439-451. 10.1101/gad.218702
Chan TA, Wang Z, Dang LH, Vogelstein B, Kinzler KW: Targeted inactivation of CTNNB1 reveals unexpected effects of beta – catenin mutation. Proc Natl Acad Sci U S A. 2002, 99: 8265-70. 10.1073/pnas.082240999
Kim JS, Crooks H, Foxworth A, Waldman T: Proof-of-principle: oncogenic beta-catenin is a valid molecular target for the development of pharmacological inhibitors. Mol Cancer Ther. 2002, 1: 1355-9.
Weinstein IB: Cancer. Addiction to oncogenes – the Achilles heal of cancer. Science. 2002, 297: 63-4. 10.1126/science.1073096
D'Cruz CM, Gunther EJ, Boxer RB, Hartman JL, Sintasath L, Moody SE, Cox JD, Ha SI, Belka GK, Golant A: c-MYC induces mammary tumorigenesis by means of a preferred pathway involving spontaneous Kras2 mutations. Nat Med. 2001, 7: 235-9. 10.1038/84691