A protein knockdown strategy to study the function of β-catenin in tumorigenesis

Springer Science and Business Media LLC - Tập 4 - Trang 1-11 - 2003
Feng Cong1, Jianxuan Zhang2, William Pao1, Pengbo Zhou2, Harold Varmus1
1Program in Cell Biology, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, USA
2Department of Pathology, Weill Medical College and Graduate School of Medical Sciences, Cornell University, New York, USA

Tóm tắt

The Wnt signaling pathway plays critical roles in cell proliferation and cell fate determination at many stages of development. A critical downstream target of Wnt signaling is the cytosolic β-catenin, which is stabilized upon Wnt activation and promotes transcription of a variety of target genes including c-myc and cyclin D. Aberrant Wnt signaling, which results from mutations of either β-catenin or adenomatous polyposis coli (APC), renders β-catenin resistant to degradation, and has been associated with multiple types of human cancers. A protein knockdown strategy was designed to reduce the cytosolic β-catenin levels through accelerating its turnover rate. By engineering a chimeric protein with the β-catenin binding domain of E-cadherin fused to βTrCP ubiquitin-protein ligase, the stable β-catenin mutant was recruited to the cellular SCF (S kp1, C ullin 1, and F-box-containing substrate receptor) ubiquitination machinery for ubiquitination and degradation. The DLD1 colon cancer cells express wild type β-catenin at abnormally high levels due to loss of APC. Remarkably, conditional expression of βTrCP-E-cadherin under the control of a tetracycline-repressive promoter in DLD1 cells selectively knocked down the cytosolic, but not membrane-associated subpopulation of β-catenin. As a result, DLD1 cells were impaired in their growth and clonogenic ability in vitro, and lost their tumorigenic potential in nude mice. We have designed a novel approach to induce degradation of stabilized/mutated β-catenin. Our results suggest that a high concentration of cytoplasmic β-catenin is critical for the growth of colorectal tumor cells. The protein knockdown strategy can be utilized not only as a novel method to dissect the role of oncoproteins in tumorigenesis, but also as a unique tool to delineate the function of a subpopulation of proteins localized to a specific subcellular compartment.

Tài liệu tham khảo

Wodarz A, Nusse R: Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol. 1998, 14: 59-88. 10.1146/annurev.cellbio.14.1.59 Nusse R, Varmus HE: Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell. 1982, 31: 99-109. Polakis P: Wnt signaling and cancer. Genes Dev. 2000, 14: 1837-51. Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, Kinzler KW: Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science. 1997, 275: 1787-90. 10.1126/science.275.5307.1787 He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW: Identification of c-MYC as a target of the APC pathway. Science. 1998, 281: 1509-12. 10.1126/science.281.5382.1509 Tetsu O, McCormick F: Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature. 1999, 398: 422-6. 10.1038/18884 Shtutman M, Zhurinsky J, Simcha I, Albanese C, D'Amico M, Pestell R, Ben-Ze'ev A: The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci U S A. 1999, 96: 5522-7. 10.1073/pnas.96.10.5522 Behrens J, Birchmeier W: Cell-cell adhesion in invasion and metastasis of carcinomas. Cancer Treat Res. 1994, 71: 251-66. Perl AK, Wilgenbus P, Dahl U, Semb H, Christofori G: A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature. 1998, 392: 190-3. 10.1038/32433 Hochstrasser M: Ubiquitin-dependent protein degradation. Annu Rev Genet. 1996, 30: 405-39. 10.1146/annurev.genet.30.1.405 Deshaies RJ: SCF and Cullin/Ring H2-based ubiquitin ligases. Annu Rev Cell Dev Biol. 1999, 15: 435-67. 10.1146/annurev.cellbio.15.1.435 Yaron A, Hatzubai A, Davis M, Lavon I, Amit S, Manning AM, Andersen JS, Mann M, Mercurio F, Ben-Neriah Y: Identification of the receptor component of the IkappaBalpha-ubiquitin ligase. Nature. 1998, 396: 590-4. 10.1038/25159 JT Winston, Strack P, Beer-Romero P, Chu CY, Elledge SJ, Harper JW: The SCFbeta-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IkappaBalpha and beta-catenin and stimulates IkappaBalpha ubiquitination in vitro. Genes Dev. 1999, 13: 270-83. Tan P, Fuchs SY, Chen A, Wu K, Gomez C, Ronai Z, Pan ZQ: Recruitment of a ROC1-CUL1 ubiquitin ligase by Skp1 and HOS to catalyze the ubiquitination of I kappa B alpha. Mol Cell. 1999, 3: 527-33. Latres E, Chiaur DS, Pagano M: The human F box protein beta-Trcp associates with the Cul1/Skp1 complex and regulates the stability of beta-catenin. Oncogene. 1999, 18: 849-54. 10.1038/sj.onc.1202653 Zhou P, Bogacki R, McReynolds L, Howley PM: Harnessing the ubiquitination machinery to target the degradation of specific cellular proteins. Mol Cell. 2000, 6: 751-6. Rubinfeld B, Robbins P, El-Gamil M, Albert I, Porfiri E, Polakis P: Stabilization of beta-catenin by genetic defects in melanoma cell lines. Science. 1997, 275: 1790-2. 10.1126/science.275.5307.1790 van de Wetering M, Cavallo R, Dooijes D, van Beest M, van Es J, Loureiro J, Ypma A, Hursh D, Jones T, Bejsovec A: Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell. 1997, 88: 789-99. Yu J, Zhang L, Hwang PM, Rago C, Kinzler KW, Vogelstein B: Identification and classification of p53-regulated genes. Proc Natl Acad Sci U S A. 1999, 96: 14517-22. 10.1073/pnas.96.25.14517 Satoh S, Daigo Y, Furukawa Y, Kato T, Miwa N, Nishiwaki T, Kawasoe T, Ishiguro H, Fujita M, Tokino T: AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1. Nat Genet. 2000, 24: 245-50. 10.1038/73448 Hsu W, Shakya R, Costantini F: Impaired mammary gland and lymphoid development caused by inducible expression of Axin in transgenic mice. J Cell Biol. 2001, 155: 1055-64. 10.1083/jcb.200107066 Morin PJ, Vogelstein B, Kinzler KW: Apoptosis and APC in colorectal tumorigenesis. Proc Natl Acad Sci U S A. 1996, 93: 7950-4. 10.1073/pnas.93.15.7950 Shih IM, Yu J, He TC, Vogelstein B, Kinzler KW: The beta-catenin binding domain of adenomatous polyposis coli is sufficient for tumor suppression. Cancer Res. 2000, 60: 1671-6. Neo SY, Zhang Y, Yaw LP, Li P, Lin SC: Axin-induced apoptosis depends on the extent of its JNK activation and its ability to down-regulate beta-catenin levels. Biochem Biophys Res Commun. 2000, 272: 144-50. 10.1006/bbrc.2000.2751 van de Wetering M, Sancho E, Verweij C, de Lau W, Oving I, Hurlstone A, van der Horn K, Batlle E, Coudreuse D, Haramis AP: The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell. 2002, 111: 241-50. Xu L, Corcoran RB, Welsh JW, Pennica D, Levine AJ: WISP-1 is a Wnt-1- and beta-catenin-responsive oncogene. Genes Dev. 2000, 14: 585-95. Kioussi C, Briata P, Baek SH, Rose DW, Hamblet NS, Herman T, Ohgi KA, Lin C, Gleiberman A, Wang J: Identification of a Wnt/Dvl/beta-Catenin --> Pitx2 pathway mediating cell-type-specific proliferation during development. Cell. 2002, 111: 673-85. Davis M, Hatzubai A, Andersen JS, Ben-Shushan E, Fisher GZ, Yaron A, Bauskin A, Mercurio F, Mann M, Ben-Neriah Y: Pseudosubstrate regulation of the SCF([beta]-TrCP) ubiquitin ligase by hnRNP-U. Genes Dev. 2002, 16: 439-451. 10.1101/gad.218702 Chan TA, Wang Z, Dang LH, Vogelstein B, Kinzler KW: Targeted inactivation of CTNNB1 reveals unexpected effects of beta – catenin mutation. Proc Natl Acad Sci U S A. 2002, 99: 8265-70. 10.1073/pnas.082240999 Kim JS, Crooks H, Foxworth A, Waldman T: Proof-of-principle: oncogenic beta-catenin is a valid molecular target for the development of pharmacological inhibitors. Mol Cancer Ther. 2002, 1: 1355-9. Weinstein IB: Cancer. Addiction to oncogenes – the Achilles heal of cancer. Science. 2002, 297: 63-4. 10.1126/science.1073096 D'Cruz CM, Gunther EJ, Boxer RB, Hartman JL, Sintasath L, Moody SE, Cox JD, Ha SI, Belka GK, Golant A: c-MYC induces mammary tumorigenesis by means of a preferred pathway involving spontaneous Kras2 mutations. Nat Med. 2001, 7: 235-9. 10.1038/84691