A proposal for calculating the no-observed-adverse-effect level (NOAEL) for organic compounds responsible for liver toxicity based on their physicochemical properties

Nofer Institute of Occupational Medicine - Tập 27 - Trang 627-640 - 2014
Marek Jakubowski1, Sławomir Czerczak1
1Department of Chemical Safety, Nofer Institute of Occupational Medicine, Łódź, Poland

Tóm tắt

Both environmental and occupational exposure limits are based on the no-observed-adverse-effect level (NOAEL), lowest-observed-adverse-effect level (LOAEL) or benchmark dose (BMD) deriving from epidemiological and experimental studies. The aim of this study is to investigate to what extent the NOAEL values for organic compounds responsible for liver toxicity calculated based on their physicochemical properties could be used for calculating occupational exposure limits. The distribution coefficients from air to the liver (log Kliver) were calculated according to the Abraham solvation equation. NOAEL and LOAEL values for early effects in the liver were obtained from the literature data. The descriptors for Abraham’s equation were found for 59 compounds, which were divided into 2 groups: “non-reactive” (alcohols, ketones, esters, ethers, aromatic and aliphatic hydrocarbons, amides) and “possibly reactive” (aldehydes, allyl compounds, amines, benzyl halides, halogenated hydrocarbons, acrylates). The correlation coefficients between log-log K and log NOAEL for non-reactive and reactive compounds amounted to r = −0.8123 and r = −0.8045, respectively, and were statistically significant. It appears that the Abraham equation could be used to predict the NOAEL values for compounds lacking information concerning their liver toxicity. In view of the tendency to limit animal testing procedures, the method proposed in this paper can improve the practice of setting exposure guidelines for the unstudied compounds.

Tài liệu tham khảo

Abraham MH. Scales of solute hydrogen-bonding: Their construction and application of physicochemical and biochemical processes. Chem Soc Rev. 1993;22:73–83, http://dx.doi.org/10.1039/cs9932200073. Abraham MH, Gola JMR, Cometto-Muniz JE, Cain WS. The correlation and prediction of VOC threshold for nasal pungency, eye irritation and odour in humans. Indoor Built Environ. 2001;10:252–257, http://dx.doi.org/10.1177/1420326X0101000320. Abraham MH, Ibrahim A, Acree Jr WE. Air to blood distribution of volatile organic compounds: A linear free energy analysis. Chem Res Toxicol. 2005;18:904–911, http://dx.doi.org/10.1021/tx050066d. Abraham MH, Ibrahim A, Acree Jr WE. Air to liver partition coefficients for volatile organic compounds and blood to liver partition coefficients for volatile organic compounds and drugs. Eur J Med Chem. 2007;42:743–751, http://dx.doi.org/10.1016/j.ejmech.2006.12.011. Abraham MH, Ibrahim A, Acree Jr WE. Air to brain, blood to brain and plasma to brain distribution of volatile organic compounds: Linear free energy analyses. Eur J Med Chem. 2006;41:494–502. Abraham MH, Ibrahim A, Acree Jr WE. Air to lung partition coefficients for volatile organic compounds and blood to lung partition coefficients for volatile organic compounds and drugs. Eur J Med Chem. 2008;43:478–485, http://dx.doi.org/10.1016/j.ejmech.2007.04.002. Jakubowski M, Czerczak S. Calculation of retention of volatile organic compounds in the lung on the basis of their physicochemical properties. Environ Toxicol Pharmacol. 2009;2:311–315, http://dx.doi.org/10.1016/j.etap.2009.05.011. Jakubowski M, Czerczak S. A proposal for calculating occupational exposure limits for volatile organic compounds acting as sensory irritants on the basis of their physicochemical properties. J Occup Environ Hyg. 2010;7:429–434, http://dx.doi.org/10.1080/15459624.2010.483983. Barrat MD, Rodford RA. The computational prediction of toxicity. Curr Opinion Chem Biol. 2001;5:383–388, http://dx.doi.org/10.1016/S1367-5931(00)00218-0. Abraham MH, Kumarsingh R, Cometto-Muniz JE, Cain WS. An algorithm for nasal pungency thresholds in man. Arch Toxicol. 1998;72:227–232, http://dx.doi.org/10.1007/s002040050493. EPA U.S. Environmental Protection Agency. Ninety-day gavage study in albino rats using acetone. Washington, DC: U.S. EPA, Office of Solid Waste; 1986. White RD, Daughtrey WC, Wells MS. Health effects of inhaled tertiary amyl methyl ether and tertiary butyl ether. Toxicol Lett. 1995;82/83:719–724, http://dx.doi.org/10.1016/0378-4274(95)03590-7. NTP, U.S. National Toxicology Program. Toxicology and carcinogenesis studies of 2-butoxyethanol (CAS NO 111-76-2) in F344/N rats and B6C3F1 mice (inhalation studies). TR-484. Research Triangle Park: NTP; 2000[cited 2000 March 17]. Available from: http://ntp.niehs.nih.gov/ntp/htdocs/lt_rpts/tr484.pdf. Cushman JR, Norris JC, Dodd DE, Darmer KI, Morris CR. Subchronic inhalation toxicity and neurotoxicity assessment of cumene in fischer 344 rats. J Am Coll Toxicol. 1995;14: 129–147, http://dx.doi.org/10.3109/10915819509008687. Malley LA, Bamberger JR, Stadler JC, Elliot GS, Hansen JF, Chiu T, et al. Subchronic toxicity of cyclohexane in rats and mice by inhalation exposure. Drug Chem Tox. 2000;23(4):513–537, http://dx.doi.org/10.1081/DCT-100101969. Treon JF, Crutchfield WE, Kitzmiller KV. The physiological response of animals to cyclohexane, methylcyclohexane, and certain derivatives of these compounds. II. Inhalation. J Ind Hyg Toxicol. 1943;25:323–347. Horn HJ. Toxicology of dimethylacetamide. Toxicol Appl Pharmacol. 1961;3:12–24, http://dx.doi.org/10.1016/0041-008X(61)90003-5. Clayton JWJr, Barnes JR, Hood DB, Schepers GWH. The inhalation toxicity of dimethylformamide (DMF). Am Ind Hyg Assoc J. 1963;24:144–154, http://dx.doi.org/10.1080/00028896309342942. Bevan C. Monohydric alcohols-C1 to C6. In: Bingham E, Cohrssen B, Powell CH, editors. Patty’s Toxicology. 5th ed. Vol. 6. New York: John Wiley&Sons; 2001. p. 365–541, http://dx.doi.org/10.1002/0471435139.tox077. Hathaway GJ, Proctor NH, Hughes JP, editors. Ethyl acetate. In: Hathaway GJ, Proctor NH, Hughes JP, editors. Proctor and Hughes’ chemical hazards of the workplace. 4th ed. New York: Van Nostrand Reinhold; 1996. p. 306. Wolf MA, Rowe VK, McCollister DD. Toxicological studies of certain alkylated benzenes and benzene. Arch Ind Health. 1956;14:387–398. Cameron GR, Doniger CR. The toxicity of indene. J Pathol Bacteriol. 1939;49:529–533, http://dx.doi.org/10.1002/path.1700490308. Lington AW, Dodd DF, Ridlon SA, Douglas JF, Kneiss JJ, Andrews LS. Evaluation of 13-week inhalation toxicity study on MTBE in Fisher 344 rats. J Appl Toxicol. 1997;17(Suppl 1):S37–S44, http://dx.doi.org/10.1002/(SICI)1099-1263(199705)17:1+%3CS37::AID-JAT409%3E3.3.CO;2-H. Katz GV, Renner ER, Terhaar CJ. Subchronic inhalation toxicity of methyl isoamyl ketone in rats. Fund Appl Toxicol. 1986;6:498–505, http://dx.doi.org/10.1016/0272-0590(86)90223-X. MacEwen JD, Vernot EH, Haun CC. Effect of 90-day continuous exposure to methylisobutylketone on dogs, monkeys, and rabbits. Springfield: National Technical Information Service; 1971. Fabre R, Truhaut R, Laham S. Toxicological research on replacement solvents for benzene. IV. Study on xylenes. Arch Mal Prof. 1960;21:301–313. NTP U.S. National Toxicology Program. Toxicology and carcinogenesis studies of acrylonitrile. Report TR 447. Research Triangle Park: NTP; 1996 [cited 2013 Sept 12]. Available from: http://ntp.niehs.nih.gov/ntp/htdocs/lt_rpts/tr447.pdf. Cleveland FP. A summary of work on aldrin and dieldrin toxicity at the Kettering Laboratory. Arch Environ Health. 1966;13:195–198, http://dx.doi.org/10.1080/00039896.1966.10664532. Carpanigni FMB, Gaunt IF, Hardy J, Gangolli SD, Butterworth KR, Lloyd AG. Short-term toxicity of allyl alcohol in rats. Toxicology. 1978;9:29–45, http://dx.doi.org/10.1016/0300-483X(78)90029-X. Quast JF, Henck JW, Schuetz DJ. Allyl chloride-subchronic studies Results of an inhalation 4-day probe and 90-day subchronic study in laboratory rodents. Final Report. U.S.A, Midland: Toxicology Research Laboratory, Dow Chemical; 1982. Aida Y, Takada K, Uchida O, Yasuhara K, Kurosawa Y, Tobe M. Toxicities of microencapsuled tribromomethane, dibromochloromethane and bromodichlorome-thane administered in the diet to Wistar rats for one month. J Toxicol Sci. 1992;17:119–133, http://dx.doi.org/10.2131/jts.17.119. Nagano K, Umeda Y, Saito MI, Nishizawa T, Ikawa N, Artio H, et al. Thirteen-week inhalation toxicity of carbon tetrachloride in rats and mice. J Occup Health. 2007;49:249–259, http://dx.doi.org/10.1539/joh.49.249. Dilley JV, Lewis TR. Toxic evaluation of inhaled chlorobenzene. Toxicol Appl Pharmacol. 1978;45:327. Torkelson TR, Oyen F, Rowe VK. The toxicity of chloroform as determined by single and repeated exposure of laboratory animals. Am Ind Hyg Assoc J. 1976;37:697–704, http://dx.doi.org/10.1080/0002889768507551. Levine BS, Furediu EM, Gordon DE, Burns JM, Lish PM. Thirteen-week toxicity study of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in Fisher 344 rats. Toxicol Lett. 1981;8:241–245, http://dx.doi.org/10.1016/0378-4274(81)90108-9. Hollingsworth RL, Rowe VK, Oyen T, Torkelson MS, Adams EM. Toxicity of o-dichlorobenzene studies on animals and industrial experience. AMA Arch Ind Health. 1958;17:180–187. Hollingsworth RL, Rowe VK, Oyen T, Hoyle HR, Spencer HC. Toxicity of paradichlorobenzene. Arch Ind Health. 1956;14:138–147. Hofmann HY, Birnsteil H, Jobst P. On the inhalation toxicity of 1,1- and 1,2-Dichloroethane. Arch Toxicol. 1971;27: 248–265, http://dx.doi.org/10.1007/BF00315048. Heppel LA, Neal PA, Perrin TL. Toxicology of dichloromethane (Methylene chloride). I. Studies on toxicology of daily inhalation. J Ind Hyg Toxicol. 1944;26:8–16. Beyer KHJr, Bergfeld WF, Berndt WO. Final report on the safety assessment of triethanolamine, diethanolamine, and monoethanolamine. J Am Coll Toxicol. 1983;2:183–235, http://dx.doi.org/10.3109/10915818309142006. Brieger H, Hodes WA. Toxic effects of exposure to vapors of aliphatic amines. AMA Arch Ind Hyg Occup Med. 1986;3:287–291. Thomas JO, Ribelin WE, Woodward JR, DeEds F. The chronic toxicity of diphenylamine for dogs. Toxicol Appl Pharmacol. 1967;11:184–194, http://dx.doi.org/10.1016/0041-008X(67)90037-3. Dikshith TSS, Raizada RB, Srivastava MK, Kaphalia BS. Response of rats to repeated oral administration of endosulfan. Ind Health. 1984;22:295–304, http://dx.doi.org/10.2486/indhealth.22.295. Karimullina NK, Gizatullina AA. Effect of ethyl bromide on the liver. Pharmacol Toxicol. 1969;32:165–167. NTP U.S. National Toxicology Program. Toxicology and carcinogenesis studies of chloroethane (ethyl chloride) in F344/N rats and B6C3F1 mice (inhalation studies). Technical Report 346. Research Triangle Park: NTP; 1989 [cited 2013 Sept 12]. Available from: http://ntp.niehs.nih.gov/ntp/htdocs/lt_rpts/tr346.pdf. Spencer HC, Rowe VK, Adams EM. Vapor toxicity of ethylene dichloride determined by experiments on laboratory animals. Arch Ind Hyg Occup Med. 1951;4:482–493. Chenoweth MB, Leong BKJ, Sparschu GL, Torkelson TR. Toxicity of methoxyflurane, halothane, and diethyl ether in laboratory animals on repeated inhalation of subanesthetic concentrations. In: Donald W, Benson MD. Cellular Biology and Toxicity of Anesthetics. Baltimore: Williams & Wilkins; 1972. p. 275–285. International Agency for Research on Cancer (IARC). IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, Vol. 20, Heptachlor and Heptachlor Epoxide. Lyon: IARC; 1979. p. 129–154. Kuiper-Goodman T, Grant DL, Moodie CA, Korsrud GO, Munro IC. Subacute toxicity of hexachlorobenzene in the rat. Toxicol Appl Pharmacol. 1977;40:529–549, http://dx.doi.org/10.1016/0041-008X(77)90078-3. American Conference of Governmental Industrial Hygienists (ACGIH). 2010 TLVs and BEIs with 7th Edition Documentation. Cincinnati, OH: ACGIH; 2010. Gorzinski SJ, Nolan RJ, Mc Collister SB, Kociba RJ, Mattsson JL. Subchronic oral toxicity, tissue distribution and clearance of hexachloroethane in the rat. Drug Chem Toxicol. 1985;8:155–169, http://dx.doi.org/10.3109/01480548508999167. Gohlke R. [4,4-Diaminodiphenylmethane in a chronic experiment]. Z Gesamte Hyg Ihre Grenzgeb. 1978;24:159–162. German. Dow Chemical U.S.A. Picloram. A two-year dietary chronic toxicity-oncogenicity study in Fisher 344 rats. Midland: Dow Chemical Company; 1986. Bruckner JV, MacKenzie WF, Ramanathan R, Muralidhara S, Kim HJ. Oral toxicity of 1,2-dichloropropane: Acute, short-term, and long-termstudies in rats. Fundam Appl Toxicol. 1989;12:713–730, http://dx.doi.org/10.1016/0272-0590(89)90003-1. Anderson RC. 90-Day subchronic oral toxicity in rats. Test material: Pyridine, Vol. 1. Pub. No. EPA-905/1-83-001; NTIS Pub. No. PB88-176136. Springfield: U.S. National Technical Information Service; 1987. Buben JA, O’Flaherty EJ. Delinneation of the role of metabolism in the hepatotoxicity of trichloroethylene and perchloroethylene: A dose-effect study. Toxicol Appl Pharmacol. 1985;78:105–122, http://dx.doi.org/10.1016/0041-008X(85)90310-2. Coate WB, Schoenfisch WH, Lewis TR, Busey WM. Chronic inhalation exposure of rats, rabbits and monkeys to 1,2,4-trichlorobenzene. Arch Environ Health. 1977;32:249–255, http://dx.doi.org/10.1080/00039896.1977.10667291. Reid JB. Saturated methyl halogenated aliphatic hydrocarbons. In: Bingham E, Cohrssen B, Powell CH, editors. Patty’s toxicology. 5th ed. Vol. 6. New York: John Wiley & Sons; 2001. p. 1–99, http://dx.doi.org/10.1002/0471435139.tox062. Adams EM, Spencer HC, Rowe VK, McCollister BS, Irish DD. Vapor toxicity of trichloroethylene determined by experiments on laboratory animals. Arch Ind Hyg Occup Med. 1951;4:469–481. Johannsen FR, Levinskas GJ, Rusch GM. Evaluation of the subchronic and reproductive effects of a series of chlorinated propanes in the rat. I. The toxicity of 1,2,3-trichloropropane. J Toxicol Environ Health. 1988;25:299–315, http://dx.doi.org/10.1080/15287398809531211. Levine BS, Rust JH, Barkley JJ, Furedi EM, Lish PM. Six-month oral toxicity study on trinitrotoluene in beagle dogs. Toxicology. 1990;63:233–244, http://dx.doi.org/10.1016/0300-483X(90)90045-I. Lemen RA. Unsaturated halogenated hydrocarbons. In: Bingham E, Cohrssen B, Powell CH, editors. Patty’s Toxicology. 5th ed. Vol. 5. New York: John Wiley & Sons; 2001. p. 205–298. Magnusson G, Bodin NO, Hansson E. Hepatic changes in dogs and rats induced by xylidine isomers. Acta Pathol Mictrobiol Scand. 1971;79:639–648. Alexeeff GV, Broadwin R, Liaw J, Dawson SV. Characterization of the LOAEL-to-NOAEL uncertainty factor for mild adverse effects from acute inhalation exposures. Regul Toxicol Pharmacol. 2002;36:96–105, http://dx.doi.org/10.1006/rtph.2002.1562. REACH. Reference preliminary Technical Guidance Document (reference p-TGD). Chapter 3, Human health hazard assessment. Helsinki: ECHA; 2011[cited 2013 Sept 12]. Available from: http://www.hse.gov.uk/aboutus/meetings/iacs/acts/watch/091106/p8annex1.pdf. DFG. Deutsche Forschungsgemeinschaft. List of MAK and BAT Values 2010. Report No. 46. Weinheim: Wiley-VCH Verlag GmbH& Co. KGaA; 2010. CIOP-PIB. Interdepartmental commission for maximum admissible concentrations and intensities for agents harmful to health in the working environment. Harmful substances in occupational environment, admissible concentrations. Warszawa: CIOP-PIB; 2010. Simon-Hettich B, Rothfuss A, Steger-Hartmann T. Use of computer-assissted prediction of toxic effects of chemical substances. Toxicology. 2006;224:156–162, http://dx.doi.org/10.1016/j.tox.2006.04.032.