Mô hình tỷ lệ của hệ thống nhân lực Markov

Emerald - Tập 6 Số 1 - Trang 100-122 - 2011
K. Nilakantan1, Jayaram K. Sankaran2, B.G. Raghavendra3
1Institute of Management Technology, Nagpur, India
2Business School, University of Auckland, Auckland, New Zealand
3Department of Management Studies, Indian Institute of Science, Bangalore, India

Tóm tắt

Mục đíchMục đích của bài báo này là xây dựng một mô hình hệ thống nhân lực phân cấp tuân theo các chính sách tỷ lệ trong việc tuyển dụng và thăng tiến nhân viên của họ, nhằm bảo vệ quyền lợi nghề nghiệp của những nhân viên hiện tại.Thiết kế/phương pháp/tiếp cậnCác hệ thống nhân lực được mô hình hóa như các hệ thống Markov, và các đặc điểm nội tại cũng như hành vi dài hạn của chúng được nghiên cứu.Kết quảĐiều quan trọng là cho thấy rằng các hệ thống tỷ lệ như vậy không ảnh hưởng đến tính linh hoạt trong dài hạn, và cũng có thể cung cấp phương tiện bổ sung để kiểm soát tỷ lệ nhân lực trong hệ thống. Các kết quả lý thuyết đã được kiểm tra bằng dữ liệu thực tế, và một mức độ tương đồng tốt đã được quan sát giữa các dự đoán lý thuyết và hành vi quan sát thực tế.Ý nghĩa thực tiễnMô hình này cũng có thể được áp dụng cho các tổ chức thuê ngoài một phần công việc của họ, với lực lượng lao động thuê ngoài được coi là những người được tuyển dụng vào hệ thống.Sự mới lạ/gia trịSự thuê ngoài công việc đang được thực hiện ở quy mô ngày càng tăng trong thời gian gần đây và đôi khi trở nên gây tranh cãi, do đó, ngày càng có nhiều tổ chức tiến hành các chính sách bảo hộ; mô hình trong bài báo này cung cấp một khung lý thuyết để nhìn nhận và phân tích hiện tượng này.

Từ khóa


Tài liệu tham khảo

Abdallaoui, G. (1987), “Maintainability of a grade structure as a transportation problem”, Journal of the Operational Research Society, Vol. 38 No. 4, pp. 367‐8. Al‐Zubaidi, H. and Christer, A.H. (1997), “Probability of maintaining or attaining a structure in one step”, Journal of Applied Probability, Vol. 24, pp. 1006‐11. Bartholomew, D.J. (1982), Stochastic Models for Social Processes, 3rd ed., Wiley, New York, NY. Bordoloi, S.K. (2004), “Agent recruitment planning in knowledge‐intensive call centers”, Journal of Service Research, Vol. 6 No. 4, pp. 309‐23. Carette, P. (1999), “Modelling hierarchical systems by a continuous‐time homogeneous Markov chain using two‐wave panel data”, Journal of Applied Probability, Vol. 36 No. 3, pp. 644‐53. Chandra, S. (1989), “Three characteristic Markov type manpower flow models”, Opsearch, Vol. 20 No. 1, pp. 28‐35. Charnes, A., Cooper, W.N., Niehaus, R.J. and Sholtz, D. (1974), “Multilevel models for career management and resources planning”, in Clough, D.J., Leeves, C.C. and Ohmer, A.L. (Eds), Manpower Planning Models, English Universities Press, London. Davies, S.G. (1973), “Structural control in a graded manpower system”, Management Science, Vol. 20, pp. 76‐84. Feuer, M.J. and Schinnar, A.P. (1984), “Sensitivity analysis of promotion opportunities in graded organizations”, Journal of the Operational Research Society, Vol. 35 No. 10, pp. 915‐22. Fry, M.J., Magazine, M. and Rao, U.S. (2003), “Firefighter staffing including temporary absences and wastage”, Technical Paper, College of Business, University of Cincinnati, Cincinnati, OH. Gaimon, C. and Thompson, G.L. (1984), “A distributed parameter cohort personnel planning model that uses cross‐sectional data”, Management Science, Vol. 30 No. 6, pp. 750‐64. Gani, J. (1963), “Formulae for projecting enrolments and degrees awarded in universities”, Journal of the Royal Statistical Society, Vol. A126, pp. 400‐9. Georgiou, A.C. (1992), “Partial maintainability and control in non‐homogeneous Markov manpower systems”, European Journal Operational Research, Vol. 62 No. 2, pp. 241‐51. Georgiou, A.C. and Vassiliou, P.C.G. (1992), “Periodicity of asymptotically attainable structures in non‐homogeneous Markov systems”, Linear Algebra and Its Applications, Vol. 176, pp. 137‐74. Georgiou, A.C. and Vassiliou, P.C.G. (1997), “Cost models in non‐homogenous Markov systems”, European Journal of Operational Research, Vol. 100 No. 1, pp. 81‐96. Gerontidis, I.I. (1995), “Periodicity of the profile process in Markov manpower systems”, European Journal of Operational Research, Vol. 85 No. 3, pp. 650‐9. Glen, J.J. (1977), “Length of service distributions in Markov manpower models”, Operational Research Quarterly, Vol. 28 No. 4, pp. 975‐82. Grinold, R.C. (1974), “Optimal control of a graded manpower system”, Management Science, Vol. 22 No. 8, pp. 1201‐16. Guerry, M.A. (1999), “Using fuzzy sets in manpower planning”, Journal of Applied Probability, Vol. 36 No. 1, pp. 155‐62. Hayne, W.J. and Marshall, K.T. (1977), “Two‐characteristic Markov type manpower flow models”, Naval Logistical Research Quarterly, Vol. 24 No. 2, pp. 235‐55. Kalamatianou, A.G. (1987), “Attainable and maintainable structures in Markov manpower systems with pressure in the grades”, Journal of the Operational Research Society, Vol. 38, pp. 183‐90. Lai, K.K., Liu, K. and Liu, J. (2002), “On dispatching unequally capable service technicians”, IMA Journal of Management Mathematics, Vol. 13 No. 3, pp. 153‐65. McClean, S. (1991), “Manpower planning models and their estimation”, European Journal Operational Research, Vol. 51 No. 2, pp. 179‐87. Martel, A. and Price, W. (1981), “Stochastic programming applied to human resource planning”, Journal of the Operational Research Society, Vol. 32 No. 1, pp. 187‐96. Mehlman, A. (1980), “An approach to optimal recruitment and transition strategies for manpower systems using dynamic programming”, Journal of the Operational Research Society, Vol. 31, pp. 1009‐15. Mukherjee, S.P. and Chattopadhyay, A.K. (1990), “A stochastic analysis of a staffing problem”, Journal of the Operational Research Society, Vol. 40 No. 5, pp. 489‐94. Nehra, V. and Khurana, D.K. (1990), “A computerized manpower planning model for hierarchical organizations”, Opsearch, Vol. 27 No. 10. Nicholls, G.M. (1985), “Tertiary education faculty planning: an application of a substantially new direct control model”, Journal of the Operational Research Society, Vol. 36 No. 2, pp. 137‐45. Papadopoulou, A.A. and Vassiliou, P.C.G. (1994), “Asymptotic behaviour of non‐homogeneous semi‐Markov systems”, Linear Algebra and its Applications, Vol. 210, pp. 153‐98. Popova, E. and Morton, D. (1998), “Adaptive manpower scheduling”, in Medeiros, D.J., Watson, E.F., Carson, J.S. and Manivannan, M.S. (Eds), Proceedings of the Winter Simulation Conference, University of Texas, Austin, TX, pp. 661‐8. Raghavendra, B.G. (1991), “A bivariate model for Markov manpower planning systems”, Journal of the Operational Research Society, Vol. 42 No. 7, pp. 565‐70. Rao, P. (1991), “A dynamic programming approach to determine optimal manpower recruitment policies”, Journal of the Operational Research Society, Vol. 41 No. 10, pp. 983‐8. Sankaran, J.K. (1990), “Notes on convergence of sequences”, Technical Note 1, Department of Management Studies, Indian Institute of Science, Bangalore. Sankaran, J.K. (1995), “Short‐term retrenchment planning in hierarchical manpower systems'”, Naval Research Logistics, Vol. 42 No. 5, pp. 821‐37. Skulj, D., Vehovar, V. and Stamfelj, D. (2008), “The modelling of manpower by Markov chains – a case study of the Slovenian armed forces”, Informatica, Vol. 32, pp. 289‐97. Tsaklidis, G. and Vassiliou, P.C.G. (1988), “Asymptotic periodicity of the variances and covariances of the state sizes in non‐homogeneous Markov systems”, Journal of Applied Probability, Vol. 25 No. 1, pp. 21‐33. Tsaklidis, G. and Vassiliou, P.C.G. (1992), “Periodicity of infinite products of matrices with some negative elements and row sums equal to one”, Linear Algebra and Its Applications, Vol. 176, pp. 175‐96. Tsantas, N. (2001), “Ergodic behaviour of a Markov chain model in a stochastic environment”, Mathematical Methods of Operations Research, Vol. 54 No. 1, pp. 101‐17. Ugwuowo, F.I. and McClean, S.I. (2000), “Modelling heterogeneity in a manpower system: a review”, Applied Stochastic Models in Business and Industry, Vol. 16 No. 2, pp. 99‐110. Vajda, S. (1978), Mathematics of Manpower Planning, Wiley, Chichester. Vassiliou, P.C.G. (1976), “A Markov chain model for wastage in manpower systems”, Operational Research Quarterly, Vol. 27, pp. 57‐70. Vassiliou, P.C.G. (1981), “On the asymptotic behaviour of age distributions in manpower systems”, Journal of the Operational Research Society, Vol. 32, pp. 503‐6. Vassiliou, P.C.G. (1982), “Asymptotic behaviour of Markov systems”, Journal of Applied Probability, Vol. 21, pp. 315‐25. Vassiliou, P.C.G. (1984), “Cyclic behaviour and asymptotic stability of non‐homogeneous Markov systems”, Journal of Applied Probability, Vol. 21, pp. 315‐25. Vassiliou, P.C.G. and Gerontidis, I. (1985), “Variances and covariances of the grade sizes in manpower systems”, Journal of Applied Probability, Vol. 22, pp. 583‐97. Vassiliou, P.C.G. and Papadopoulou, A.A. (1992), “Non‐homogeneous semi‐Markov systems and maintainability of the state sizes”, Journal of Applied Probability, Vol. 29, pp. 519‐34. Vassiliou, P.C.G. and Tsakiridou, H.L. (2004), “Asymptotic behaviour of first passage probabilities in the perturbed non‐homogeneous semi‐Markov systems”, Communications in Statistics: Theory and Methods, Vol. 33 No. 3, pp. 651‐79. Vassiliou, P.C.G. and Tsantas, N. (1984), “Maintainability of structures in non‐homogeneous Markov systems under cyclic behaviour and input control”, SIAM Journal of Applied Mathematics, Vol. 44 No. 5, pp. 1014‐22. Veerbeck, P.J. (1991), “Decision support systems an application in strategic manpower planning of airline pilots”, European Journal of Operational Research, Vol. 55 No. 3, pp. 368‐81. Zanakis, S.H. and Maret, M.W. (1981), “A Markov chain application to manpower supply planning”, Journal of the Operational Research Society, Vol. 31, pp. 1095‐102. Nobuto, N. and Tessuro, S. (1984), “A model for recruiting and tranining decisions in manpower planning”, International Journal Production Research, Vol. 22 No. 7, pp. 1‐15. Papadopoulou, A.A. and Tsaklidis, G. (2004), “Non‐homogeneous semi‐Markov systems in discrete time and related renewal paths”, Technical Paper, Department of Mathematics, University of Thessaloniki, Thessaloniki. Rackow, P. and Corcoran, W. (1984), “The analysis of academic retrenchment using parametric programming and Markov chains”, Computers and Operational Research, Vol. 11 No. 3, pp. 307‐19. Seal, H.L. (1945), “The mathematics of a population composed of K strata each recruited from the stratum below and supported at the lowest level by a uniform annual number of entrants”, Biometrika, Vol. 33, pp. 226‐30.