Cảm biến điện hóa tiềm năng dựa trên các lớp graphen oxit giảm có mạ vàng để phát hiện Cd(II) và Pb(II)

Chemical Papers - Trang 1-18 - 2024
Reyhan Selin Uysal1,2
1Department of Genetics and Bioengineering, Istanbul Bilgi University, Istanbul, Turkey
2Grupo de investigación “Calidad y Seguridad Alimentaria”, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández, Orihuela, Spain

Tóm tắt

Nghiên cứu này trình bày phương pháp phát hiện ion kim loại nặng trong mẫu nước khoáng dựa trên điện hóa. Mục tiêu của nghiên cứu này là thiết kế một cảm biến dùng một lần, chi phí thấp và nhạy cao để định lượng Cd(II) và Pb(II). Để đạt được điều này, chúng tôi đã điều chỉnh điện cực graphit bút chì được phủ bằng graphene oxide (GO), giảm điện hóa graphene oxide và lắng đọng các hạt vàng kim loại bằng phương pháp voltammetry phá màu điện cực hình vuông. Những phát hiện cho thấy rằng hiệu ứng kết hợp giữa GO và sự kích hoạt bề mặt với axit auric đã cải thiện tính dẫn điện, từ đó tạo điều kiện thuận lợi cho việc lắng đọng Cd(II) và Pb(II) lên bề mặt điện cực. Trong điều kiện tối ưu, một mối tương quan tuyến tính đã được quan sát giữa các giá trị dòng điện và nồng độ Cd(II) và Pb(II) trong khoảng từ 0.6–1.6 µM và 0.4–1.6 µM, trong đó các giá trị giới hạn phát hiện được thu được lần lượt là 0.36 µM và 0.24 µM cho Cd(II) và Pb(II). Theo kết quả thực nghiệm, điện cực được phát triển có thể đạt được tỷ lệ phục hồi cao cho việc phát hiện Cd(II) (98.5%) và Pb(II) (93.5%) trong các mẫu nước khoáng thiên nhiên ở trạng thái khí.

Từ khóa

#ion kim loại nặng #cảm biến điện hóa #graphene oxide #Cd(II) #Pb(II) #voltammetry phá màu

Tài liệu tham khảo

Abraham J, Vasu KS, Williams CD, Gopinadhan K, Su Y, Cherian CT et al (2017) Tunable sieving of ions using graphene oxide membranes. Nat Nanotechnol 12(6):546–550 Alam AU, Howlader MM, Hu N-X, Deen MJ (2019) Electrochemical sensing of lead in drinking water using β-cyclodextrin-modified MWCNTs. Sens Actuators B Chem 296:126632 Al-Gaashani R, Najjar A, Zakaria Y, Mansour S, Atieh M (2019) XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods. Ceram Int 45(11):14439–14448 Awual MR (2019) Mesoporous composite material for efficient lead (II) detection and removal from aqueous media. J Environ Chem Eng 7(3):103124 Baghayeri M, Alinezhad H, Fayazi M, Tarahomi M, Ghanei-Motlagh R, Maleki B (2019) A novel electrochemical sensor based on a glassy carbon electrode modified with dendrimer functionalized magnetic graphene oxide for simultaneous determination of trace Pb(II) and Cd(II). Electrochim Acta 312:80–88 Bathinapatla A, Gorle G, Kanchi S, Puthalapattu RP, Ling YC (2022) An ultra-sensitive laccase/polyaziridine-bismuth selenide nanoplates modified GCE for detection of atenolol in pharmaceuticals and urine samples. Bioelectrochemistry 147:108212 Chailapakul O, Korsrisakul S, Siangproh W, Grudpan K (2008) Fast and simultaneous detection of heavy metals using a simple and reliable microchip-electrochemistry route: an alternative approach to food analysis. Talanta 74(4):683–689 Christidi S, Chrysostomou A, Economou A, Kokkinos C, Fielden PR, Baldock SJ et al (2019) Disposable injection molded conductive electrodes modified with antimony film for the electrochemical determination of trace Pb(II) and Cd(II). Sensors 19(21):4809 Cui L, Wu J, Ju H (2015) Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials. Biosens Bioelectron 63:276–286 Dahaghin Z, Kilmartin PA, Mousavi HZ (2018) Simultaneous determination of lead (II) and cadmium (II) at a glassy carbon electrode modified with GO@ Fe3O4@ benzothiazole-2-carboxaldehyde using square wave anodic stripping voltammetry. J Mol Liq 249:1125–1132 Dai H, Wang N, Wang D, Ma H, Lin M (2016) An electrochemical sensor based on phytic acid functionalized polypyrrole/graphene oxide nanocomposites for simultaneous determination of Cd(II) and Pb(II). Chem Eng J 299:150–155 De-hua Z, Jian-sheng C, Li-li D, Tong W, Li-xin W, Da-xi L et al (2018) Study on biological toxicity response characteristics of algae chlorophyll fluorescence to herbicides. Spectrosc Spect Anal 38(9):2820–2827 Dhara P, Kumar R, Binetti L, Nguyen HT, Alwis LS, Sun T et al (2019) Optical fiber-based heavy metal detection using the localized surface plasmon resonance technique. IEEE Sens J 19(19):8720–8726 Dönmez KB, Çetinkaya E, Deveci S, Karadağ S, Şahin Y, Doğu M (2017) Preparation of electrochemically treated nanoporous pencil-graphite electrodes for the simultaneous determination of Pb and Cd in water samples. Anal Bioanal Chem 409:4827–4837 Finšgar M, Kovačec L (2020) Copper-bismuth-film in situ electrodes for heavy metal detection. Microchem J 154:104635 Frydrych A, Jurowski K (2023) Portable X-ray fluorescence (pXRF) as a powerful and trending analytical tool for in situ food samples analysis: a comprehensive review of application-State of the art. Trends Anal Chem 166:117165 Guo H-L, Wang X-F, Qian Q-Y, Wang F-B, Xia X-H (2009) A green approach to the synthesis of graphene nanosheets. ACS Nano 3(9):2653–2659 Hassan KM, Elhaddad GM, AbdelAzzem M (2019) Voltammetric determination of cadmium (II), lead (II) and copper (II) with a glassy carbon electrode modified with silver nanoparticles deposited on poly (1, 8-diaminonaphthalene). Microchim Acta 186:1–10 Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339 Jabariyan S, Zanjanchi MA (2019) Colorimetric detection of cadmium ions using modified silver nanoparticles. Appl Phys A 125:1–10 Jin H, Zhang M, Wei M, Cheng J-H (2019) A voltammetric biosensor for mercury (II) using reduced graphene oxide@ gold nanorods and thymine-Hg (II)-thymine interaction. Microchim Acta 186:1–8 Jin M, Yuan H, Liu B, Peng J, Xu L, Yang D (2020) Review of the distribution and detection methods of heavy metals in the environment. Anal Methods 12(48):5747–5766 Karimi-Maleh H, Beitollahi H, Kumar PS, Tajik S, Jahani PM, Karimi F et al (2022) Recent advances in carbon nanomaterials-based electrochemical sensors for food azo dyes detection. Food Chem Toxicol 164:112961 Karthik R, Thambidurai S (2017) Synthesis of cobalt doped ZnO/reduced graphene oxide nanorods as active material for heavy metal ions sensor and antibacterial activity. J Alloys Compd 715:254–265 Kim S, Jeong Y, Park M-O, Jang Y, Bae J-S, Hong K-S et al (2023) Development of boron doped diamond electrodes material for heavy metal ion sensor with high sensitivity and durability. J Mater Res Technol 23:1375–1385 Li Y, Huang H, Cui R, Wang D, Yin Z, Wang D et al (2021) Electrochemical sensor based on graphdiyne is effectively used to determine Cd2+ and Pb2+ in water. Sens Actuators B Chem 332:129519 Li T, Shang D, Gao S, Wang B, Kong H, Yang G et al (2022) Two-dimensional material-based electrochemical sensors/biosensors for food safety and biomolecular detection. Biosensors 12(5):314 Li S-N, Zhang C, Li F, Ren N-Q, Ho S-H (2023) Recent advances of algae-bacteria consortia in aquatic remediation. Crit Rev Environ Sci Technol 53(3):315–339 Liu H, Baghayeri M, Amiri A, Karimabadi F, Nodehi M, Fayazi M et al (2023) A strategy for As (III) determination based on ultrafine gold nanoparticles decorated on magnetic graphene oxide. Environ Res 231:116177 Lomax DJ, Dryfe RA (2018) Electrodeposition of Au on basal plane graphite and graphene. J Electroanal Chem 819:374–383 Mattio E, Robert-Peillard F, Vassalo L, Branger C, Margaillan A, Brach-Papa C et al (2018) 3D-printed lab-on-valve for fluorescent determination of cadmium and lead in water. Talanta 183:201–208 Nemati F, Rezaie M, Tabesh H, Eid K, Xu G, Ganjali MR et al (2022) Cerium functionalized graphene nano-structures and their applications; a review. Environ Res 208:112685 Newton L, Slater T, Clark N, Vijayaraghavan A (2013) Self assembled monolayers (SAMs) on metallic surfaces (gold and graphene) for electronic applications. J Mater Chem C 1(3):376–393 Omeje KO, Ezema BO, Okonkwo F, Onyishi NC, Ozioko J, Rasaq WA et al (2021) Quantification of heavy metals and pesticide residues in widely consumed nigerian food crops using atomic absorption spectroscopy (AAS) and gas chromatography (GC). Toxins 13(12):870 Ouyang R, Zhu Z, Tatum CE, Chambers JQ, Xue Z-L (2011) Simultaneous stripping detection of Zn (II), Cd(II) and Pb(II) using a bimetallic Hg–Bi/single-walled carbon nanotubes composite electrode. J Electroanal Chem 656(1–2):78–84 Pizarro J, Segura R, Tapia D, Navarro F, Fuenzalida F, Aguirre MJ (2020) Inexpensive and green electrochemical sensor for the determination of Cd(II) and Pb(II) by square wave anodic stripping voltammetry in bivalve mollusks. Food Chem 321:126682 Priya T, Dhanalakshmi N, Thennarasu S, Karthikeyan V, Thinakaran N (2019) Ultra sensitive electrochemical detection of Cd2+ and Pb2+ using penetrable nature of graphene/gold nanoparticles/modified L-cysteine nanocomposite. Chem Phys Lett 731:136621 Qin X, Tang D, Zhang Y, Cheng Y, He F, Su Z et al (2020) An electrochemical sensor for simultaneous stripping determination of Cd(II) and Pb(II) based on gold nanoparticles functionalized β-cyclodextrin-graphene hybrids. Int J Electrochem Sci 15(2):1517–1528 Qin J, Su Z, Mao Y, Liu C, Qi B, Fang G et al (2021) Carboxyl-functionalized hollow polymer microspheres for detection of trace metal elements in complex food matrixes by ICP-MS assisted with solid-phase extraction. Ecotoxicol Environ Saf 208:111729 Quezada-Renteria JA, Chazaro-Ruiz LF, Rangel-Mendez JR (2020) Poorly conductive electrochemically reduced graphene oxide films modified with alkyne chains to avoid the corrosion-promoting effect of graphene-based materials on carbon steel. Carbon 167:512–522 Rohanifar A, Alipourasiabi N, Shyam Sunder GS, Lawrence JG, Kirchhoff JR (2020) Reversible chelating polymer for determination of heavy metals by dispersive micro solid-phase extraction with ICP-MS. Microchim Acta 187:1–10 Sánchez-Calvo A, Blanco-López MC, Costa-García A (2020) Based working electrodes coated with mercury or bismuth films for heavy metals determination. Biosensors 10(5):52 Seliverstova E, Ibrayev N, Menshova E (2022) Modification of structure and optical properties of graphene oxide dots, prepared by laser ablation method. Fuller Nanotub 30(1):119–125 Tonello NV, D’Eramo F, Marioli JM, Crevillen AG, Escarpa A (2018) Extraction-free colorimetric determination of thymol and carvacrol isomers in essential oils by pH-dependent formation of gold nanoparticles. Microchim Acta 185:1–8 Uhrovčík J (2014) Strategy for determination of LOD and LOQ values—some basic aspects. Talanta 119:178–180 Urhan BK, Demir Ü, Özer TÖ, Doğan HÖ (2020) Electrochemical fabrication of Ni nanoparticles-decorated electrochemically reduced graphene oxide composite electrode for non-enzymatic glucose detection. Thin Solid Films 693:137695 Vargas C, Simarro R, Reina JA, Bautista LF, Molina MC, González-Benítez N (2019) New approach for biological synthesis of reduced graphene oxide. Biochem Eng J 151:107331 Wang J, Deo RP, Thongngamdee S, Ogorevc B (2001) Effect of surface-active compounds on the stripping voltammetric response of bismuth film electrodes. Electroanalysis 13(14):1153–1156 Wang S, Forzani ES, Tao N (2007) Detection of heavy metal ions in water by high-resolution surface plasmon resonance spectroscopy combined with anodic stripping voltammetry. Anal Chem 79(12):4427–4432 Wang L, Peng X, Fu H, Huang C, Li Y, Liu Z (2020) Recent advances in the development of electrochemical aptasensors for detection of heavy metals in food. Biosens Bioelectron 147:111777 Wei H, Pan D, Cui Y, Liu H, Gao G, Xia J (2020) Anodic stripping determination of selenium in seawater using an electrode modified with gold nanodendrites/perforated reduced graphene oxide. Int J Electrochem Sci 15(2):1669–1680 Wen L, Dong J, Yang H, Zhao J, Hu Z, Han H et al (2022) A novel electrochemical sensor for simultaneous detection of Cd2+ and Pb2+ by MXene aerogel-CuO/carbon cloth flexible electrode based on oxygen vacancy and bismuth film. Sci Total Environ 851:158325 Wong SHM, Lim SS, Tiong TJ, Show PL, Zaid HFM, Loh H-S (2020) Preliminary in vitro evaluation of chitosan–graphene oxide scaffolds on osteoblastic adhesion, proliferation, and early differentiation. Int J Mol Sci 21(15):5202 Xia F, Hu B, Shao S, Xu D, Zhou Y, Zhou Y et al (2019) Improvement of spatial modeling of Cr, Pb, Cd, As and Ni in soil based on Portable X-ray Fluorescence (PXRF) and geostatistics: a case study in East China. Int J Environ Res Public Health 16(15):2694 Xing H, Xu J, Zhu X, Duan X, Lu L, Wang W et al (2016) Highly sensitive simultaneous determination of cadmium (II), lead (II), copper (II), and mercury (II) ions on N-doped graphene modified electrode. J Electroanal Chem 760:52–58 Xiong Y, You M, Liu F, Wu M, Cai C, Ding L et al (2020) Pt-decorated, nanocarbon-intercalated, and N-doped graphene with enhanced activity and stability for oxygen reduction reaction. ACS Appl Energy Mater 3(3):2490–2495 Xu J, Cao Z, Zhang Y, Yuan Z, Lou Z, Xu X et al (2018) A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: preparation, application, and mechanism. Chemosphere 195:351–364 Yaman YT, Bolat G, Saygin TB, Abaci S (2021) Molecularly imprinted label-free sensor platform for impedimetric detection of 3-monochloropropane-1,2˗diol. Sens Actuators B Chem 328:128986 Yang H, Hu P, Tang J, Cheng Y, Wang F, Chen Z (2021) A bifunctional electrochemical aptasensor based on AuNPs-coated ERGO nanosheets for sensitive detection of adenosine and thrombin. J Solid State Electrochem 25:1383–1391 Yoo MJ, Park HB (2019) Effect of hydrogen peroxide on properties of graphene oxide in Hummers method. Carbon Balance Manag 141:515–522 Zhang M, Zhu G, Li T, Lou X, Zhu L (2020) A dual-channel optical fiber sensor based on surface plasmon resonance for heavy metal ions detection in contaminated water. Opt Commun 462:124750 Zhao D, Cheah WY, Lai SH, Ng E-p, Khoo KS, Show PL et al (2023) Symbiosis of microalgae and bacteria consortium for heavy metal remediation in wastewater. J Environ Chem Eng 11(3):109943