Tối ưu hóa quy trình sản xuất catechol thay thế (3-nitrocatechol và 3-methylcatechol) bằng sinh học xúc tác
Tóm tắt
Từ khóa
Tài liệu tham khảo
Scharrenburg GJM, Frankena J: Biokatalyse helpt farmaceutische industrie bij asymmetrische synthese. Chemisch Magazine. 1996, 4: 284-286.
Parales RE, Bruce NC, Schmid A, Wackett LP: Biodegradation, biotransformation and biocatalysis (B3). Appl Environ Microbiol. 2002, 68: 4699-4709. 10.1128/AEM.68.10.4699-4709.2002.
Shirai K: Screening of microorganisms for catechol production from benzene. Agric Biol Chem. 1986, 50: 2875-2880.
Spain JC, Gibson DT: Oxidation of substituted phenols by Pseudomonas putida F1 and Pseudomonas sp strain JS6. Appl Environ Microbiol. 1988, 54: 1399-1404.
Schweigert N, Zehnder AJB, Eggen RIL: Chemical properties of catechols and their molecular modes of toxic action in cells, from microorganisms to mammals. Environ Microbiol. 2001, 3: 81-91. 10.1046/j.1462-2920.2001.00176.x.
Pialis P, Saville BA: Production of L-DOPA from tyrosinase immobilized on nylon 6,6: enzyme stability and scale up. Enzyme Microb Techn. 1998, 22: 261-268. 10.1016/S0141-0229(97)00195-6.
Held M, Suske W, Schmid A, Engesser KH, Kohler HPE, Witholt B, Wubbolts MG: Preparative scale production of 3-substituted catechols using a novel monooxygenase from Pseudomonas azelaica HBP 1. J Molec Catal B- Enzym. 1998, 5: 87-93. 10.1016/S1381-1177(98)00012-5.
Vardar G, Kang R, Thomas KW: Protein engineering of toluene-o-xylene monooxygenase from Pseudomonas stutzeri OX1 for oxidizing nitrobenzene to 3-nitrocatechol, 4-nitrocatechol, and nitrohydroquinone. J Biotech. 2005, 115: 145-156. 10.1016/j.jbiotec.2004.08.008.
Ennis MD, Ghazal NB: The synthesis of (+) - and (-)-Flesinoxan. Application of enzymatic resolution methodology. Tetrahed Lett. 1992, 33: 6287-6290. 10.1016/S0040-4039(00)60954-1.
Rao NN, Lotz S, Worges K, Minor D: Continuous biocatalytic processes. Org Process Res Dev. 2009, 13: 607-616. 10.1021/op800314f.
Zylstra GJ, McCombie WR, Gibson DT, Finette BA: Toluene degradation by Pseudomonas putida F1: genetic organization tod operon. Appl Environ Microbiol. 1988, 54: 1498-1503.
Kodama N, Murakami S, Shinke R, Aoki K: Production of catechol by transpositional mutants of aniline-assimilating Pseudomonas species AW-2. J of Ferment and Bioeng. 1996, 82: 480-483. 10.1016/S0922-338X(97)86987-5.
Muñoz R, Díaz LF, Bordel S, Villaverde S: Inhibitory effects of catechol accumulation on benzene biodegradation in Pseudomonas putida F1 cultures. Chemosphere. 2007, 68: 244-252. 10.1016/j.chemosphere.2007.01.016.
Chae HJ, Young JE: Optimization of catechol production using immobilized resting cells of Pseudomonas putida in aqueous/organic two-phase system. J Microbiol Biotechnol. 1997, 7: 345-351.
Boshoff A, Burton MH, Burton SG: Optimization of catechol production by membrane-immobilized polyphenol oxidase: a modeling approach. Biotechnol Bioeng. 2003, 83: 1-7. 10.1002/bit.10695.
Prakash D, Chauhan A, Jain RK: Plasmid encoded degradation of p-nitrophenol by P. cepacia. Biochem Biophys Res Commun. 1996, 224: 375-381. 10.1006/bbrc.1996.1036.
Parke D: Application of p-toluidine in chromogenic detection of catechol and protocatechuate, diphenolic intermediates in catabolism of aromatic compounds. Appl Environ Microbiol. 1992, 58: 2694-2697.
Kieboom J, Van den Brink H, Frankena J, deBont JAM: Production of 3-nitrocatechol by oxygenase-containing bacteria: optimization of the nitrobenzene biotransformation by Nocardia S3. Appl Microbiol Biotechnol. 2001, 55: 290-295. 10.1007/s002530000552.
Bradford MM: A rapid and sensitive method for the quantification of microgram quantities of protein utilizating the principle of protein-dye binding. Anal Biochem. 1976, 72: 248-254. 10.1016/0003-2697(76)90527-3.
Gibson DT, Zylstra GJ, Chauhan S: Biotransformations catalyzed by toluene dioxygenase from Pseudomonas putida F1. Biotransformations pathogenasis and evolving biotechnology. Edited by: Silver S, Chakrabarty AN, Iglewski B, Kaplan S. 1990, 121-132.
de Bont JAM, Vorage MJAW, S Hartmans S, van den Tweel WJJ: Microbial degradation of 1,3-dichlorobenzene. Appl Environ Microbiol. 1986, 52: 677-680.
Husken LE, Beeftink HH, de Bont JAM, Wery J: High-rate 3- methylcatechol production in Pseudomonas putida strains by means of a novel expression system. Appl Microbiol Biotechnol. 2001, 55: 571-577. 10.1007/s002530000566.
Robinson GK, Stephens GM, Dalton H, Geary PJ: The production of catechols from benzene and toluene by Pseudomonas putida in glucose fed-batch culture. Biocatalysis. 1992, 6: 81-100. 10.3109/10242429209014885.
Sikkema J, de Bont JAM, Poolman B: Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev. 1995, 59: 201-222.
Babu KR, Satyanarayana T: Parametric optimization of extracellular a-amylase production by thermophilic Bacillus coagulans. Folia Microbiol. 1993, 38: 77-80. 10.1007/BF02814555.
Finette BA, Gibson DT: Initial studies on the regulation of toluene degradation by Pseudomonas putida F1. Biocatalysis. 1988, 2: 29-37. 10.3109/10242428808998177.
Jones KH, Trudgill PW, Hopper DT: Evidence of two pathways for the metabolism of phenol by Aspergillus fumigatus. Arch Microbiol. 1995, 163: 176-181. 10.1007/BF00305350.