Một lý thuyết thống nhất có thể dự đoán và kiểm tra về khối lượng fermion, sự trộn lẫn và leptogenesis

Journal of High Energy Physics - Tập 2022 - Trang 1-38 - 2022
Bowen Fu1, Stephen F. King1, Luca Marsili2, Silvia Pascoli2,3,4, Jessica Turner5, Ye-Ling Zhou6,7
1School of Physics and Astronomy, University of Southampton, Southampton, UK
2Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
3INFN Sezione di Bologna, Bologna, Italy
4CERN, Theoretical Physics Department, Geneva, Switzerland
5Institute for Particle Physics Phenomenology, Department of Physics, Durham University, Durham, UK
6School of Fundamental Physics and Mathematical Sciences, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
7International Centre for Theoretical Physics Asia-Pacific, Beijing/Hangzhou, China

Tóm tắt

Chúng tôi xem xét một mô hình Lý thuyết Grand Unified Theory (GUT) SO(10) không siêu đối xứng tối thiểu, có thể tái tạo khối lượng fermion và các tham số trộn lẫn quan sát được của Mô hình Chuẩn. Chúng tôi tính toán các quy mô của sự phá vỡ đối xứng tự phát từ GUT tới nhóm Gauge của Mô hình Chuẩn bằng cách sử dụng các phương trình nhóm tái renormal hóa hai vòng. Quy trình này xác định tỷ lệ phân rã proton và quy mô phá vỡ U(1)B−L, điều này tạo ra các dây vũ trụ và các quy mô khối lượng neutrino thuận tay phải. Do đó, những vùng của không gian tham số trong đó leptogenesis nhiệt là khả thi được xác định và liên hệ với khối lượng fermion và sự trộn lẫn, tỷ lệ phân rã beta kép không có neutrino, tỷ lệ phân rã proton, và tín hiệu sóng hấp dẫn phát sinh từ mạng lưới dây vũ trụ. Chúng tôi chứng minh rằng khuôn khổ này, có thể giải thích khối lượng fermion và sự trộn lẫn của Mô hình Chuẩn cũng như sự không đối xứng baryon quan sát được, sẽ bị hạn chế rất nhiều bởi thế hệ tiếp theo của các máy dò sóng hấp dẫn và các thí nghiệm dao động neutrino, điều này cũng sẽ hạn chế tuổi thọ proton.

Từ khóa

#Lý thuyết thống nhất #khối lượng fermion #leptogenesis #phân rã proton #sóng hấp dẫn

Tài liệu tham khảo

H. Georgi and S.L. Glashow, Unified weak and electromagnetic interactions without neutral currents, Phys. Rev. Lett. 28 (1972) 1494 [INSPIRE]. S.M. Barr, A New Symmetry Breaking Pattern for SO(10) and Proton Decay, Phys. Lett. B 112 (1982) 219 [INSPIRE]. J.P. Derendinger, J.E. Kim and D.V. Nanopoulos, Anti-SU(5), Phys. Lett. B 139 (1984) 170 [INSPIRE]. A. De Rujula, H. Georgi and S.L. Glashow, Flavor goniometry by proton decay, Phys. Rev. Lett. 45 (1980) 413 [INSPIRE]. I. Antoniadis, J.R. Ellis, J.S. Hagelin and D.V. Nanopoulos, The Flipped SU(5) × U(1) String Model Revamped, Phys. Lett. B 231 (1989) 65 [INSPIRE]. J.C. Pati and A. Salam, Unified Lepton-Hadron Symmetry and a Gauge Theory of the Basic Interactions, Phys. Rev. D 8 (1973) 1240 [INSPIRE]. R. Jeannerot, J. Rocher and M. Sakellariadou, How generic is cosmic string formation in SUSY GUTs, Phys. Rev. D 68 (2003) 103514 [hep-ph/0308134] [INSPIRE]. M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B 174 (1986) 45 [INSPIRE]. W. Buchmüller, V. Domcke, H. Murayama and K. Schmitz, Probing the scale of grand unification with gravitational waves, Phys. Lett. B 809 (2020) 135764 [arXiv:1912.03695] [INSPIRE]. J.A. Dror, T. Hiramatsu, K. Kohri, H. Murayama and G. White, Testing the Seesaw Mechanism and Leptogenesis with Gravitational Waves, Phys. Rev. Lett. 124 (2020) 041804 [arXiv:1908.03227] [INSPIRE]. S.F. King, S. Pascoli, J. Turner and Y.-L. Zhou, Gravitational Waves and Proton Decay: Complementary Windows into Grand Unified Theories, Phys. Rev. Lett. 126 (2021) 021802 [arXiv:2005.13549] [INSPIRE]. S.F. King, S. Pascoli, J. Turner and Y.-L. Zhou, Confronting SO(10) GUTs with proton decay and gravitational waves, JHEP 10 (2021) 225 [arXiv:2106.15634] [INSPIRE]. Super-Kamiokande collaboration, Search for proton decay via p → e+π0 and p → μ+π0 with an enlarged fiducial volume in Super-Kamiokande I-IV, Phys. Rev. D 102 (2020) 112011 [arXiv:2010.16098] [INSPIRE]. NANOGrav collaboration, The NANOGrav 12.5 yr Data Set: Search for an Isotropic Stochastic Gravitational-wave Background, Astrophys. J. Lett. 905 (2020) L34 [arXiv:2009.04496] [INSPIRE]. B. Goncharov et al., On the Evidence for a Common-spectrum Process in the Search for the Nanohertz Gravitational-wave Background with the Parkes Pulsar Timing Array, Astrophys. J. Lett. 917 (2021) L19 [arXiv:2107.12112] [INSPIRE]. S. Chen et al., Common-red-signal analysis with 24-yr high-precision timing of the European Pulsar Timing Array: inferences in the stochastic gravitational-wave background search, Mon. Not. Roy. Astron. Soc. 508 (2021) 4970 [arXiv:2110.13184] [INSPIRE]. J. Antoniadis et al., The International Pulsar Timing Array second data release: Search for an isotropic gravitational wave background, Mon. Not. Roy. Astron. Soc. 510 (2022) 4873 [arXiv:2201.03980] [INSPIRE]. R.N. Manchester et al., The Parkes Pulsar Timing Array Project, Publ. Astron. Soc. Austral. 30 (2013) 17 [arXiv:1210.6130] [INSPIRE]. NANOGRAV collaboration, The NANOGrav 11-year Data Set: Pulsar-timing Constraints On The Stochastic Gravitational-wave Background, Astrophys. J. 859 (2018) 47 [arXiv:1801.02617] [INSPIRE]. Hyper-Kamiokande collaboration, Hyper-Kamiokande Design Report, arXiv:1805.04163 [INSPIRE]. F. del Aguila and L.E. Ibáñez, Higgs Bosons in SO(10) and Partial Unification, Nucl. Phys. B 177 (1981) 60 [INSPIRE]. R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE]. A.S. Joshipura and K.M. Patel, Fermion Masses in SO(10) Models, Phys. Rev. D 83 (2011) 095002 [arXiv:1102.5148] [INSPIRE]. B. Bajc, A. Melfo, G. Senjanović and F. Vissani, Yukawa sector in non-supersymmetric renormalizable SO(10), Phys. Rev. D 73 (2006) 055001 [hep-ph/0510139] [INSPIRE]. K.S. Babu and R.N. Mohapatra, Predictive neutrino spectrum in minimal SO(10) grand unification, Phys. Rev. Lett. 70 (1993) 2845 [hep-ph/9209215] [INSPIRE]. R.N. Mohapatra and G. Senjanović, Neutrino Mass and Spontaneous Parity Nonconservation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE]. M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE]. T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, Conf. Proc. C 7902131 (1979) 95 [INSPIRE]. P. Minkowski, μ → eγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE]. S. Bertolini, L. Di Luzio and M. Malinsky, Intermediate mass scales in the non-supersymmetric SO(10) grand unification: A Reappraisal, Phys. Rev. D 80 (2009) 015013 [arXiv:0903.4049] [INSPIRE]. B. Dutta, Y. Mimura and R.N. Mohapatra, Neutrino masses and mixings in a predictive SO(10) model with CKM CP-violation, Phys. Lett. B 603 (2004) 35 [hep-ph/0406262] [INSPIRE]. J. Chakrabortty, R. Maji, S.K. Patra, T. Srivastava and S. Mohanty, Roadmap of left-right models based on GUTs, Phys. Rev. D 97 (2018) 095010 [arXiv:1711.11391] [INSPIRE]. J. Chakrabortty, R. Maji and S.F. King, Unification, Proton Decay and Topological Defects in non-SUSY GUTs with Thresholds, Phys. Rev. D 99 (2019) 095008 [arXiv:1901.05867] [INSPIRE]. Z.-z. Xing, H. Zhang and S. Zhou, Impacts of the Higgs mass on vacuum stability, running fermion masses and two-body Higgs decays, Phys. Rev. D 86 (2012) 013013 [arXiv:1112.3112] [INSPIRE]. G. Altarelli and G. Blankenburg, Different SO(10) Paths to Fermion Masses and Mixings, JHEP 03 (2011) 133 [arXiv:1012.2697] [INSPIRE]. W. Grimus and H. Kuhbock, Fermion masses and mixings in a renormalizable SO(10) × ℤ2 GUT, Phys. Lett. B 643 (2006) 182 [hep-ph/0607197] [INSPIRE]. W. Grimus and H. Kuhbock, A renormalizable SO(10) GUT scenario with spontaneous CP-violation, Eur. Phys. J. C 51 (2007) 721 [hep-ph/0612132] [INSPIRE]. B. Dutta, Y. Mimura and R.N. Mohapatra, Suppressing proton decay in the minimal SO(10) model, Phys. Rev. Lett. 94 (2005) 091804 [hep-ph/0412105] [INSPIRE]. Z.-z. Xing, H. Zhang and S. Zhou, Updated Values of Running Quark and Lepton Masses, Phys. Rev. D 77 (2008) 113016 [arXiv:0712.1419] [INSPIRE]. K.S. Babu, B. Bajc and S. Saad, Yukawa Sector of Minimal SO(10) Unification, JHEP 02 (2017) 136 [arXiv:1612.04329] [INSPIRE]. I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, T. Schwetz and A. Zhou, The fate of hints: updated global analysis of three-flavor neutrino oscillations, JHEP 09 (2020) 178 [arXiv:2007.14792] [INSPIRE]. G.C. Branco, R. Gonzalez Felipe, F.R. Joaquim and M.N. Rebelo, Leptogenesis, CP-violation and neutrino data: What can we learn?, Nucl. Phys. B 640 (2002) 202 [hep-ph/0202030] [INSPIRE]. E. Nezri and J. Orloff, Neutrino oscillations versus leptogenesis in SO(10) models, JHEP 04 (2003) 020 [hep-ph/0004227] [INSPIRE]. P. Di Bari and A. Riotto, Successful type-I Leptogenesis with SO(10)-inspired mass relations, Phys. Lett. B 671 (2009) 462 [arXiv:0809.2285] [INSPIRE]. P. Di Bari and A. Riotto, Testing SO(10)-inspired leptogenesis with low energy neutrino experiments, JCAP 04 (2011) 037 [arXiv:1012.2343] [INSPIRE]. A. Dueck and W. Rodejohann, Fits to SO(10) Grand Unified Models, JHEP 09 (2013) 024 [arXiv:1306.4468] [INSPIRE]. C.S. Fong, D. Meloni, A. Meroni and E. Nardi, Leptogenesis in SO(10), JHEP 01 (2015) 111 [arXiv:1412.4776] [INSPIRE]. V.S. Mummidi and K.M. Patel, Leptogenesis and fermion mass fit in a renormalizable SO(10) model, JHEP 12 (2021) 042 [arXiv:2109.04050] [INSPIRE]. R. Barbieri, P. Creminelli, A. Strumia and N. Tetradis, Baryogenesis through leptogenesis, Nucl. Phys. B 575 (2000) 61 [hep-ph/9911315] [INSPIRE]. A. Abada, S. Davidson, F.-X. Josse-Michaux, M. Losada and A. Riotto, Flavor issues in leptogenesis, JCAP 04 (2006) 004 [hep-ph/0601083] [INSPIRE]. A. De Simone and A. Riotto, On the impact of flavour oscillations in leptogenesis, JCAP 02 (2007) 005 [hep-ph/0611357] [INSPIRE]. S. Blanchet, P. Di Bari and G.G. Raffelt, Quantum Zeno effect and the impact of flavor in leptogenesis, JCAP 03 (2007) 012 [hep-ph/0611337] [INSPIRE]. S. Blanchet, P. Di Bari, D.A. Jones and L. Marzola, Leptogenesis with heavy neutrino flavours: from density matrix to Boltzmann equations, JCAP 01 (2013) 041 [arXiv:1112.4528] [INSPIRE]. L. Covi, E. Roulet and F. Vissani, CP violating decays in leptogenesis scenarios, Phys. Lett. B 384 (1996) 169 [hep-ph/9605319] [INSPIRE]. Planck collaboration, Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE]. K. Moffat, S. Pascoli, S.T. Petcov, H. Schulz and J. Turner, Three-flavored nonresonant leptogenesis at intermediate scales, Phys. Rev. D 98 (2018) 015036 [arXiv:1804.05066] [INSPIRE]. A. Granelli, K. Moffat, Y.F. Perez-Gonzalez, H. Schulz and J. Turner, ULYSSES: Universal LeptogeneSiS Equation Solver, Comput. Phys. Commun. 262 (2021) 107813 [arXiv:2007.09150] [INSPIRE]. M. Beneke, B. Garbrecht, M. Herranen and P. Schwaller, Finite Number Density Corrections to Leptogenesis, Nucl. Phys. B 838 (2010) 1 [arXiv:1002.1326] [INSPIRE]. LEGEND collaboration, The Large Enriched Germanium Experiment for Neutrinoless ββ Decay: LEGEND-1000 Preconceptual Design Report, arXiv:2107.11462 [INSPIRE]. nEXO collaboration, nEXO: neutrinoless double beta decay search beyond 1028 year half-life sensitivity, J. Phys. G 49 (2022) 015104 [arXiv:2106.16243] [INSPIRE]. J.J. Gomez-Cadenas, Status and prospects of the NEXT experiment for neutrinoless double beta decay searches, in 54th Rencontres de Moriond on Electroweak Interactions and Unified Theories, La Thuile Italy, March 16–23 2019, pp. 201–206 [arXiv:1906.01743] [INSPIRE]. F. Agostini et al., Sensitivity of the darwin observatory to the neutrinoless double beta decay of 136Xe. Eur. Phys. J. C 80 (2020) 808. S. Andringa et al., Current status and future prospects of the SNO + experiment, Adv. High Energy Phys. 2016 (2016) 1. E. Armengaud et al., The CUPID-mo experiment for neutrinoless double-beta decay: performance and prospects, Eur. Phys. J. C 80 (2020) 44. G. Lazarides, R. Maji and Q. Shafi, Cosmic strings, inflation, and gravity waves, Phys. Rev. D 104 (2021) 095004 [arXiv:2104.02016] [INSPIRE]. G. Lazarides, R. Maji and Q. Shafi, Gravitational waves from quasi-stable strings, JCAP 08 (2022) 042 [arXiv:2203.11204] [INSPIRE]. R. Maji and Q. Shafi, Monopoles, Strings and Gravitational Waves in Non-minimal Inflation, arXiv:2208.08137 [INSPIRE]. T. Vachaspati and A. Vilenkin, Gravitational Radiation from Cosmic Strings, Phys. Rev. D 31 (1985) 3052 [INSPIRE]. A. Vilenkin, Cosmic Strings and Domain Walls, Phys. Rept. 121 (1985) 263 [INSPIRE]. Y. Cui, M. Lewicki, D.E. Morrissey and J.D. Wells, Probing the pre-BBN universe with gravitational waves from cosmic strings, JHEP 01 (2019) 081 [arXiv:1808.08968] [INSPIRE]. J.J. Blanco-Pillado and K.D. Olum, Stochastic gravitational wave background from smoothed cosmic string loops, Phys. Rev. D 96 (2017) 104046 [arXiv:1709.02693] [INSPIRE]. J.J. Blanco-Pillado, K.D. Olum and B. Shlaer, The number of cosmic string loops, Phys. Rev. D 89 (2014) 023512 [arXiv:1309.6637] [INSPIRE]. LISA collaboration, Laser Interferometer Space Antenna, arXiv:1702.00786 [INSPIRE]. W.-H. Ruan, Z.-K. Guo, R.-G. Cai and Y.-Z. Zhang, Taiji program: Gravitational-wave sources, Int. J. Mod. Phys. A 35 (2020) 2050075 [arXiv:1807.09495] [INSPIRE]. TianQin collaboration, TianQin: a space-borne gravitational wave detector, Class. Quant. Grav. 33 (2016) 035010 [arXiv:1512.02076] [INSPIRE]. V. Corbin and N.J. Cornish, Detecting the cosmic gravitational wave background with the big bang observer, Class. Quant. Grav. 23 (2006) 2435 [gr-qc/0512039] [INSPIRE]. N. Seto, S. Kawamura and T. Nakamura, Possibility of direct measurement of the acceleration of the universe using 0.1-Hz band laser interferometer gravitational wave antenna in space, Phys. Rev. Lett. 87 (2001) 221103 [astro-ph/0108011] [INSPIRE]. MAGIS collaboration, Mid-band gravitational wave detection with precision atomic sensors, arXiv:1711.02225 [INSPIRE]. AEDGE collaboration, AEDGE: Atomic Experiment for Dark Matter and Gravity Exploration in Space, EPJ Quant. Technol. 7 (2020) 6 [arXiv:1908.00802] [INSPIRE]. L. Badurina et al., AION: An Atom Interferometer Observatory and Network, JCAP 05 (2020) 011 [arXiv:1911.11755] [INSPIRE]. B. Sathyaprakash et al., Scientific Objectives of Einstein Telescope, Class. Quant. Grav. 29 (2012) 124013 [Erratum ibid. 30 (2013) 079501] [arXiv:1206.0331] [INSPIRE]. LIGO Scientific collaboration, Exploring the Sensitivity of Next Generation Gravitational Wave Detectors, Class. Quant. Grav. 34 (2017) 044001 [arXiv:1607.08697] [INSPIRE]. L. Lentati et al., European Pulsar Timing Array Limits On An Isotropic Stochastic Gravitational-Wave Background, Mon. Not. Roy. Astron. Soc. 453 (2015) 2576 [arXiv:1504.03692] [INSPIRE]. G. Janssen et al., Gravitational wave astronomy with the SKA, PoS AASKA14 (2015) 037 [arXiv:1501.00127] [INSPIRE]. Gaia collaboration, Gaia Data Release 2 : Summary of the contents and survey properties, Astron. Astrophys. 616 (2018) A1 [arXiv:1804.09365] [INSPIRE]. Theia collaboration, Theia: Faint objects in motion or the new astrometry frontier, arXiv:1707.01348 [INSPIRE]. Z.-C. Chen, Y.-M. Wu and Q.-G. Huang, Search for the Gravitational-wave Background from Cosmic Strings with the Parkes Pulsar Timing Array Second Data Release, Astrophys. J. 936 (2022) 20 [arXiv:2205.07194] [INSPIRE]. J. Ellis and M. Lewicki, Cosmic String Interpretation of NANOGrav Pulsar Timing Data, Phys. Rev. Lett. 126 (2021) 041304 [arXiv:2009.06555] [INSPIRE].