A practical staging atlas to study embryonic development of Octopus vulgaris under controlled laboratory conditions
Tóm tắt
Octopus vulgaris has been an iconic cephalopod species for neurobiology research as well as for cephalopod aquaculture. It is one of the most intelligent and well-studied invertebrates, possessing both long- and short-term memory and the striking ability to perform complex cognitive tasks. Nevertheless, how the common octopus developed these uncommon features remains enigmatic. O. vulgaris females spawn thousands of small eggs and remain with their clutch during their entire development, cleaning, venting and protecting the eggs. In fact, eggs incubated without females usually do not develop normally, mainly due to biological contamination (fungi, bacteria, etc.). This high level of parental care might have hampered laboratory research on the embryonic development of this intriguing cephalopod. Here, we present a completely parameter-controlled artificial seawater standalone egg incubation system that replaces maternal care and allows successful embryonic development of a small-egged octopus species until hatching in a laboratory environment. We also provide a practical and detailed staging atlas based on bright-field and light sheet fluorescence microscopy imaging for precise monitoring of embryonic development. The atlas has a comparative section to benchmark stages to the different scales published by Naef (1928), Arnold (1965) and Boletzky (2016). Finally, we provide methods to monitor health and wellbeing of embryos during organogenesis. Besides introducing the study of O. vulgaris embryonic development to a wider community, this work can be a high-quality reference for comparative evolutionary developmental biology.
Tài liệu tham khảo
Amor MD, Norman MD, Roura A, Leite TS, Gleadall IG, Reid A, et al. Morphological assessment of the Octopus vulgaris species complex evaluated in light of molecular-based phylogenetic inferences. Zool Scr. 2017;46(3):275–88.
Naef A. Cephalopoda embryology. Fauna and flora of the bay of Naples. Part I, Vol. II. (translated from German); 1928. p. 1–357.
von Boletzky S. Encapsulation of cephalopod embryos: a search for functional correlations. Am Malacol Bull. 1986;4(2):217–27.
Norman M. Cephalopods: a world guide. Hackenheim: Coch books; 2000.
von Boletzky S. Biology of early life stages in cephalopod molluscs. Adv Mar Biol. 2003;44(August):143–203.
Mangold K. Octopus vulgaris. In: Cephalopod life cycles volume I species accounts; 1983. p. 335–64.
Wells MJ, Wells J. Cephalopoda: Octopoda. In: reproduction of marine invertebrates Vol IV Molluscs: gastropods and cephalopods; 1977. p. 291–336.
Márquez L, Quintana D, Lorenzo A, Almansa E. Biometrical relationships in developing eggs and neonates of Octopus vulgaris in relation to parental diet. Helgol Mar Res. 2013;67(3):461–70.
Villanueva R, Norman MD. Biology of the planktonic stages of benthic octopuses. Oceanogr Mar Biol An Annu Rev. 2008;46:105–202.
Vidal EAG, Zeidberg LD, Buskey EJ. Development of swimming abilities in squid paralarvae: behavioral and ecological implications for dispersal. Front Physiol. 2018;9:954.
Vidal EAG, Salvador B. The Tentacular strike behavior in squid: functional interdependency of morphology and predatory behaviors during ontogeny. Front Physiol. 2019;10(December):1–15.
von Boletzky S. Rotation and first reversion in the Octopus embryo - a case of gradual reversal of ciliary beat. Experientia. 1971;27(5):558–60.
Portmann A. Die Lageveränderungen der Embryonen von Eledone und Tremoctopus. Rev Suisse Zool. 1937;44:359–61.
Orelli M v, Mangold KM. La Blastocinèse de l’embryon d’Octopus vulgaris. Vie Milieu. 1961;12:77–88.
Vidal EAG, Villanueva R, Andrade JP, Gleadall IG, Iglesias J, Koueta N, et al. Cephalopod culture: current status of main biological models and research priorities. Adv Mar Biol. 2014;67:1–98.
Wintrebert P. L’éclosion par digestion de la coque chez les poissons, les amphibiens et les céphalopodes dibranchiaux décapodes. CR Assoc Anat. 1928;1928:501–3.
Orelli M v. Follikelfalten und Dotterstrukturen der Cephalopoden-Eier. Verhandlungen der Naturforschenden Gesellschaft Basel. 1960;71:272–82.
Denucé JM, Formisano A. Circumstantial evidence for an active contribution of Hoyle’s gland to enzymatic hatching of cephalopod embryos. Arch Int Physiol Biochim. 1982;90(4):B185–6.
Cyran N, Palumbo A, Klepal W, Vidal EAG, Staedler Y, Schönenberger J, et al. The short life of the Hoyle organ of Sepia officinalis: formation, differentiation and degradation by programmed cell death. Hydrobiologia. 2018;808(1):35–55.
von Boletzky S. Hatch-as-hatch-can: tricks of the trade in coleoid hatchlings (Mollusca: Cephalopoda). Neues Jahrb Geol Palaontol Abh. 2012;266(1):67–76.
von Boletzky S. Cephalopod eggs and egg masses. Oceanogr Mar Biol An Annu Rev. 1998;36:341–71.
Albertin CB, Simakov O, Mitros T, Wang ZY, Pungor JR, Edsinger-Gonzales E, et al. The octopus genome and the evolution of cephalopod neural and morphological novelties. Nature. 2015;524(7564):220–4.
Belcaid M, Casaburi G, McAnulty SJ, Schmidbaur H, Suria AM, Moriano-Gutierrez S, et al. Symbiotic organs shaped by distinct modes of genome evolution in cephalopods. Proc Natl Acad Sci U S A. 2019;116(8):3030–5.
Kim B-M, Kang S, Ahn D-H, Jung S-H, Rhee H, Yoo JS, et al. The genome of common long-arm octopus Octopus minor. Gigascience. 2018;7:giy119.
Zarrella I, Herten K, Maes G, Tai S, Yang M, Seuntjens E, et al. The survey and reference assisted assembly of the Octopus vulgaris genome. Sci Data. 2019;6(13):1–8.
García-Fernández P, Prado-Alvarez M, Nande M, del a Garcia D, Perales-Raya C, Almansa E, et al. Global impact of diet and temperature over aquaculture of Octopus vulgaris paralarvae from a transcriptomic approach. Sci Rep. 2019;9(1):10312.
Arnold JM. Normal embryonic stages of the squid, Loligo pealii (Lesuer). Biology (Basel). 1965;128:24–32.
von Boletzky S, Andouche A, Bonnaud-Ponticelli L. A developmental table of embryogenesis in Sepia officinalis. Vie Milieu - Life Environ. 2016;66(1):11–23.
Guerra A, Rocha F, González AF, Bückle LF. Embryonic stages of the Patagonian squid Loligo gahi (mollusca: Cephalopoda). Veliger. 2001;44(2):109–15.
Watanabe K, Segawa S, Sakurai Y, Okutani T. Development of the ommastrephid squid Todarodes pacificus, from fertilized egg to rhynchoteuthion paralarva. Am Malacol Bull. 1996;13(1–2):73–88.
Lee PN, Callaerts P, de Couet HG. The embryonic development of the hawaiian bobtail squid (Euprymna scolopes). Cold Spring Harb Protoc. 2009;4(11):pdb-ip77.
Uriarte I, Iglesias J, Domingues P, Rosas C, Viana MT, Navarro JC, et al. Current status and bottle neck of octopod aquaculture: the case of American species. J World Aquac Soc. 2011;42(6):735–52.
von Boletzky S, Villanueva R. Cephalopod biology. In: Cephalopod culture; 2014. p. 1–494.
Marthy H-J. Natural tranquilliser in cephalopod eggs. Nature. 1976;261:496–7.
Villanueva R. Experimental rearing and growth of planktonic Octopus vulgaris from hatching to settlement. Can J Fish Aquat. 1995;52:2639–50.
Nixon M, Mangold K. The early life of Sepia officinalis, and the contrast with that of Octopus vulgaris (Cephalopoda). J Zool. 1998;245:407–21.
Lemaire J. Table de développement embryonnaire de Sepia officinalis L. (Mollusque Céphalopode). Bull Soc Zool Fr. 1970;95:773–82.
Seibel BA, Robison BH, Haddock SHD. Post-spawning egg care by a squid. Nature. 2005;438(7070):929.
Sykes AV, Perkins K, Grigoriou P, Almansa E. Aquarium maintenance related diseases. In: Gestal C, Pascual S, Guerra Á, Fiorito G, Vieites JM, editors. Handbook of pathogens and diseases in cephalopods. Cham: Springer International Publishing; 2019. p. 181–91.
Ricón B, Gutiérrez-Higuero S, Casal T, Casal A, Costoya N, Rivera L, et al. Efecto del cuidado parental y la temperatura sobre el desarrollo embrionario del pulpo Octopus vulgaris bajo condiciones de cultivo. In: XIII Congreso Nacional de Acuicultura; 2011. p. 252–3.
Rosas C, Gallardo P, Mascaró M, Caamal-Monsreal C, Pascual C. Octopus maya. In: Cephalopod culture; 2014. p. 383–96.
Van Heukelem WF. Laboratory maintenance, breeding, rearing, and biomedical research potential of the Yucatan octopus (Octopus maya). Lab Anim Sci. 1977;27(5 Pt 2):852–9.
Maldonado E, Rangel-Huerta E, González-Gómez R, Fajardo-Alvarado G, Morillo-Velarde PS. Octopus insularis as a new marine model for evolutionary developmental biology. Biol Open. 2019;8(11):1–11. https://doi.org/10.1242/bio.046086.
Vidal EAG, von Boletzky S. Loligo vulgaris and Doryteuthis opalescens. In: Iglesias J, Fuentes L, Villanueva R, editors. Cephalopod culture. Dordrecht: Springer Netherlands; 2014. p. 271–313.
Susaki EA, Tainaka K, Perrin D, Yukinaga H, Kuno A, Ueda HR. Advanced CUBIC protocols for whole-brain and whole-body clearing and imaging. Nat Protoc. 2015;10(11):1709–27.
Fiorito G, Affuso A, Anderson DB, Basil J, Bonnaud L, Botta G, et al. Cephalopods in neuroscience: regulations, research and the 3Rs. Invertebr Neurosci. 2014;14(1):13–36.
Fiorito G, Affuso A, Basil J, Cole A, de Girolamo P, D’Angelo L, et al. Guidelines for the care and welfare of cephalopods in research -a consensus based on an initiative by CephRes, FELASA and the Boyd Group. Lab Anim. 2015;49(2 Suppl):1–90.
Smith JA, Andrews PLR, Hawkins P, Louhimies S, Ponte G, Dickel L. Cephalopod research and EU directive 2010/63/EU: requirements, impacts and ethical review. J Exp Mar Biol Ecol. 2013;447:31–45.
Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the arrive guidelines for reporting animal research. PLoS Biol. 2010;8(6):6–10.