A potential anatomic subtype of short bowel syndrome: a matched case-control study

BMC Gastroenterology - Tập 16 - Trang 1-8 - 2016
Wencheng Kong1, Jian Wang2, Rongchao Ying1, Yousheng Li2,3, Huicheng Jin1, Qi Mao2, Danhua Yao2, Mingxiao Guo4
1Department of Gastroenterological Surgery, Hangzhou First People’s Hospital, School of Clinical Medicine, Nanjing Medical University, Hangzhou, China
2Intestinal Rehabilition and Transplant Center, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
3Department of Surgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
4Department of Gastroenterological Surgery, Linyi People’s Hospital, Shandong, China

Tóm tắt

Fundamental researches suggest that ileum presents greater adaptive potential than the jejunum. However, few studies estimate the association between ileum and adaptive potential in human. To discover the association, we conducted this matched case-control study. A 1:2 pair-matched, case-control study was conducted from January 1, 2001 to January 1, 2015 in Intestinal Rehabilition and Transplant Center. The case group was ileum predominated (IP) group and the control group was jejunum predominated (JP) group. Demographic data, medical history and progression of each patient were collected. There were 24 IP cases and 48 JP controls in this study. The cumulative probabilities of parenteral nutrition (PN) weaning in IP group were higher than that in JP group. The Bristol stool scale scores of IP group were lower than that of JP group at third month. The Cox proportional hazards regression model confirmed that IP had a higher odds of PN weaning (OR = 2.69; 95 % CI: 1.27, 5.70, p = 0.01) as compared with JP group. The conditional logistic regression with 1:2 matching also confirmed IP group had a higher odds (OR = 4.84; 95 % CI: 2.02, 11.56, p <0.01). Our results indicated that ileum presents greater adaptive potential than the jejunum in nutrition and fluid absorption. And a potential anatomic subtype of short bowel syndrome was proposed. Further research need to be conducted to more fully understand the adaptive potential of ileum besides nutrition and fluid absorption.

Tài liệu tham khảo

O’Keefe SJ, Buchman AL, Fishbein TM, Jeejeebhoy KN, Jeppesen PB, Shaffer J. Short bowel syndrome and intestinal failure: consensus definitions and overview. Clin Gastroenterol Hepatol. 2006;4:6–10. Thompson JS, Rochling FA, Weseman RA, Mercer DF. Current management of short bowel syndrome. Curr Probl Surg. 2012;49:52–115. Vantini I, Benini L, Bonfante F, Talamini G, Sembenini C, Chiarioni G, et al. Survival rate and prognostic factors in patients with intestinal failure. Dig Liver Dis. 2004;36:46–55. Matarese LE. Nutrition and fluid optimization for patients with short bowel syndrome. JPEN J Parenter Enteral Nutr. 2013;37:161–70. Jeppesen PB, Pertkiewicz M, Messing B, Iyer K, Seidner DL, O’Keefe SJ, et al. Teduglutide reduces need for parenteral support among patients with short bowel syndrome with intestinal failure. Gastroenterology. 2012;143:1473–81. Tappenden KA. Intestinal adaptation following resection. JPEN J Parenter Enteral Nutr. 2014;38:23S–31S. Appleton GV, Bristol JB, Williamson RC. Proximal enterectomy provides a stronger systemic stimulus to intestinal adaptation than distal enterectomy. Gut. 1987;28(Suppl):165–8. Thompson JS, Quigley EM, Adrian TE. Factors affecting outcome following proximal and distal intestinal resection in the dog: an examination of the relative roles of mucosal adaptation, motility, luminal factors, and enteric peptides. Dig Dis Sci. 1999;44:63–74. Cosnes J, Gendre JP, Le Quintrec Y. Role of the ileocecal valve and site of intestinal resection in malabsorption after extensive small bowel resection. Digestion. 1978;18:329–36. Lewis SJ, Heaton KW. Stool form scale as a useful guide to intestinal transit time. Scand J Gastroenterol. 1997;32:920–4. Byrne TA, Persinger RL, Young LS, Ziegler TR, Wilmore DW. A new treatment for patients with short-bowel syndrome. Growth hormone, glutamine, and a modified diet. Ann Surg. 1995;222:243–55. Buchman AL, Scolapio J, Fryer J. AGA technical review on short bowel syndrome and intestinal transplantation. Gastroenterology. 2003;124:1111–34. Amiot A, Messing B, Corcos O, Panis Y, Joly F. Determinants of home parenteral nutrition dependence and survival of 268 patients with non-malignant short bowel syndrome. Clin Nutr. 2013;32:368–74. Carbonnel F, Cosnes J, Chevret S, Beaugerie L, Ngo Y, Malafosse M, et al. The role of anatomic factors in nutritional autonomy after extensive small bowel resection. JPEN J Parenter Enteral Nutr. 1996;20:275–80. Kumpf VJ. Pharmacologic management of diarrhea in patients with short bowel syndrome. JPEN J Parenter Enteral Nutr. 2014;38:38S–44S. Cosnes J, Carbonnel F, Beaugerie L. Functional adaptation after extensive small bowel resection in humans. Eur J Gastroenterol Hepatol. 1994;6:197–202. Mitchell JE, Breuer RI, Zuckerman L, Berlin J, Schilli R, Dunn JK. The colon influences ileal resection diarrhea. Dig Dis Sci. 1980;25:33–41. Tappenden KA. Pathophysiology of short bowel syndrome: considerations of resected and residual anatomy. JPEN J Parenter Enteral Nutr. 2014;38:14S–22S. Kanno N, LeSage G, Glaser S, Alpini G. Regulation of cholangiocyte bicarbonate secretion. Am J Physiol Gastrointest Liver Physiol. 2001;281:G612–25. Chandra R, Liddle RA. Cholecystokinin. Curr Opin Endocrinol Diabetes Obes. 2007;14:63–7. Cui Y, Niziolek PJ, MacDonald BT, Zylstra CR, Alenina N, Robinson DR, et al. Lrp5 functions in bone to regulate bone mass. Nat Med. 2011;17:684–91. Mieczkowska A, Irwin N, Flatt PR, Chappard D, Mabilleau G. Glucose-dependent insulinotropic polypeptide (GIP) receptor deletion leads to reduced bone strength and quality. Bone. 2013;56:337–42. Thompson JS, Weseman RA, Rochling FA, Grant WJ, Botha JF, Langnas AN, et al. Pre-resection gastric bypass reduces post-resection body mass index but not liver disease in short bowel syndrome. Am J Surg. 2014;207:942–8.