A posteriori estimation of stochastic model for multi-sensor integrated inertial kinematic positioning and navigation on basis of variance component estimation

The Journal of Global Positioning Systems - Tập 14 - Trang 1-12 - 2016
Kun Qian1, Jianguo Wang1, Baoxin Hu1
1Department of Earth and Space Science and Engineering, York Univserity, Toronto, Canada

Tóm tắt

Improving a priori stochastic models of the process and measurement noise vectors in Kalman Filer (KF) has always been a challenge. As one preferable technique to address this challenge, the variance component estimation (VCE) applied on the Kalman Filter’s process and measurement noise covariance matrix (Q & R) has been proved in plenty of applications. Unsurprisingly, VCE was expected to re-establish the stochastic model about the random errors in the IMU’s measurements in a multisensor integrated positioning and navigation system applying Kalman Filter. However, in the conventional error states-based GPS aided inertial navigation system (GPS/INS), the stochastic model tuning is difficult for the IMU’s measurements due to the amalgamation of the observables from inertial sensor and other aiding sensors. This paper proposes a generic method for the stochastic model tuning about the random errors in IMU measurements together with other sensors. The core of this novel approach is based on an innovative multisensor integration strategy which deploys upon the vehicle’s generic kinematic model and takes the IMU’s output as raw measurements in Kalman Filter (IMU/GNSS Kalman Filter). As a result, the statistical orthogonality between random error vectors of any two sensors enables the separate but parallel statistics collection of each individual random error source. Given these independent statistics corresponding to each error source, the VCE technique iteratively tunes all stochastic model of the process and measurement noise vectors. The success of the VCE algorithm is shown through a real dataset involving GPS and inertial sensors.

Tài liệu tham khảo

Amiri-Simkooei A (2007) Least-squares variance component estimation: theory and GPS applications, PhD dissertation, Delft University of Technology Bähr H, Altamimi Z, Heck B (2007) Variance component estimation for combination of terrestrial reference frames, Schriftenreihe des Studiengangs Geodäsie und Geoinformatik, Universität Karlsruhe, No. 6 Bavdekar VA, Deshpande AP, Patwardhan SC (2011) Identification of process and measurement noise covariance for state and parameter estimation using extended Kalman filter. J Process Control 21(4):585–601 Bekir E (2007) Introduction to modern navigation systems, World Scientific Publishing Bulut Y, Vines-Cavanaugh D, Bernal D (2011) Process and measurement noise estimation for Kalman filtering, Structural Dynamics, Vol. 3, pp. 375–386, Springer Caspary W, Wang J (1998) Redundanz-anteile und Varianzkomponenten im Kalman Filter. Zeitschrift für Vermessungswesen 123(4):121–128 Collins JP, Langley RB (1999) Possible weighting schemes for GPS carrier phase observations in the presence of multipath, Final contract report for the US Army Corps of Engineers Topographic Engineering Center, No. DAAH04-96-C-0086/TCN, 98151 Cui X-Z et al (2001) Generalized surveying adjustment. Publishing House of WTUSM, Wuhan Dunık J, Šimandl M (2008) Estimation of state and measurement noise covariance matrices by multi-step prediction, Proceedings of the 17th IFAC World Congress, 2008, pp. 3689–3694 Förstner W (1979) Ein Verfahren zur Schätzung von Varia und Kovarianzkomponenten, Allgemeine Vermessungs-nachrichten, No. 11–12, 1979, pp. 446–453 Gopaul NS, Wang J, Guo J (2010) On posteriori variance and covariance components estimation in GPS relative positioning, Proceedings of CPGPS 2010 Navigation and Location Services: Emerging Industry and International Exchanges, pp. 141–148 Grafarend E, Kleusberg A, Schaffrin B (1980) An introduction to the variance and covariance component estimation of Helmert type. Zeitschrift für Vermessungswesen 105(4):161–180 Helmert FR (1907) Die Ausgleichungsrechnung nach der Methode der kleinsten Quadrate, Zweite Auflage, Teubner, Lepzig Koch KR (1986) Maximum likelihood estimate of variance components. Bulletin Geodesique 60:329–338 Luo X, Mayer M, Heck B (2009) Improving the stochastic model of GNSS observations by means of SNR-based weighting. In: Observing our changing earth. Springer, Berlin Heidelberg, pp 725–734 Matisko P, Havlena V (2013) Noise covariance estimation for Kalman filter tuning using Bayesian approach and Monte Carlo. International Journal of Adaptive Control and Signal Processing 27(11):957–973 Mehra RK (1970) On the identification of variances and adaptive Kalman filtering. IEEE Trans Autom Control 15(2):175–184 Mehra R (1972) Approaches to adaptive filtering. IEEE Trans Autom Control 17(5):693–698 Ou Z (1989) Estimation of variance and covariance components. Bulletin Géodésique 63(3):139–148 Qian K, Wang J, Gopaul N, Hu B (2012) Low cost multisensor kinematic positioning and navigation system with Linux/RTAI. Journal of Sensor and Actuator Networks 1(3):166–182 Qian K, Wang J, Hu B (2013) Application of vehicle kinematic model on GPS/MEMS IMU integration, Joint EOGC 2013 & CIG Annual Conference, June 5–7, 2013, Toronto Qian K, Wang J, Hu B (2015) Novel integration strategy for GNSS-aided inertial integrated navigation. Geomatica 69(2):217–230 Rietdorf A (2004) Automatisierte Auswertung und Kalibrierung von scanneden Messsystemen mit tachy-metrischen Messprinzip, PhD dissertation, Civil Engineering and Applied Geosciences, Technical University Berlin, 2005 Rogers RM (2003) Applied mathematics in integrated navigation systems, volume 1, AIAA Sieg D, Hirsch M (2000) Varianzkomponenten-schätzung in ingenieurgeodätischen Netzen, AVN, No. 3, pp. 82–90 Takasu T (2013) RTKLIB ver. 2.4.2 Manual. http://www.rtklib.com/ Tesmer V (2004) Das stochastische Modell bei der VLBI-auswertung, PhD dissertation, No. 573, Reihe C, DGK, Munich Teunissen PJG, Amiri-Simkooei AR (2008) Least-squares variance component estimation. J Geod 82(2):65–82 Tiberius C, Kenselaar F (2003) Variance component estimation and precise GPS positioning: case study. J Surv Eng 129(1):11–18 Wang J (1997) Filtermethoden zur fehlertoleranten kinematischen Positionsbestimmung, PhD dissertation, Schriftenreihe Studiengang Vermessungswesen, UniBw München, No. 52 Wang J (2009) Reliability analysis in Kalman filtering. J of Global Positioning Systems 8(1):101–111 Wang J, Rizos C (2002) Stochastic assessment of GPS carrier phase measurements for precise static relative positioning, J of Geodesy, vol. 76, no. 2 Wang J, Sternberg H (2000) Model development for kinematic surveying of land vehicle trajectories (in German), Schriftenreihe Studiengang Vermessungswesen UinBw München, No. 60–1, ISSN 0179–1009, Germany, pp. 317–331 Wang J, Gopaul SN, Scherzinger B (2009) Simplified algorithms of variance component estimation for static and kinematic GPS single point positioning. J of Global Positioning Systems 8(1):43–52 Wang J, Gopaul SN, Jiming G (2010) Adaptive Kalman filtering based on posteriori variance-covariance components estimation, Proceedings of CPGPS 2010 Navigation and Location Services: Emerging Industry and International Exchanges, pp. 115–125 Wang L, Feng Y, Wang C (2013) Real-time assessment of GNSS observation noise with single receivers. Journal of Global Positioning Systems 12(1):73–82 Wang J, Qian K, Hu B (2014) A novel and unique IMU/GNSS Kalman filter, Keynote Speaker of Session Invited Presentation (J. Wang), CSNC 2014, May 21–23, 2014, Nanjing, China Wieser A, Gaggl M, Hartinger H (2005) Improved positioning accuracy with high sensitivity GNSS receivers and SNR aided integrity monitoring of pseudo-range observations, Proc ION GNSS, pp. 13–16 Xiao G, Wujiao D (2014) 抗差 Helmert 方差分量估计在 GPS/BDS 组合定位中的应用, 大地测量与地球动力学, 34(1), pp. 173–176 Xu P, Shen Y, Fukuda Y, Liu Y (2006) Variance component estimation in linear inverse ill-posed models. J of Geodesy 80(2):69–81 Zhou XW, Dai WJ, Zhu JJ, Li ZW, Zou ZR (2006) Helmert variance component estimation-based Vondrak filter and its application in GPS multipath error mitigation, VI Hotine-Marussi Symposium on Theoretical and Computational Geodesy, International Association of Geodesy Symposia, vol. 132, pp. 287–292, Springer Berlin Heidelberg