A posteriori error estimators for mixed finite element methods in linear elasticity

Springer Science and Business Media LLC - Tập 97 - Trang 757-778 - 2004
Marco Lonsing1, Rüdiger Verfürth1
1Ruhr-Universität Bochum, Fakultät für Mathematik, Bochum, Germany

Tóm tắt

Three a posteriori error estimators for PEERS and BDMS elements in linear elasticity are presented: one residual error estimator and two estimators based on the solution of auxiliary local problems with different boundary conditions. All of them are reliable and efficient with respect to the standard norm and furthermore robust for nearly incompressible materials.

Tài liệu tham khảo

Alonso, A.: Error estimators for a mixed method. Numer. Math. 74, 385–395 (1996) Arnold, D., Brezzi, F., Douglas jun, J.: PEERS: A new mixed finite element for plane elasticity. Japan J. Appl. Math. 1, 347–367 (1984) Arnold, D., Falk, R.: Well-posedness of the fundamental boundary value problems for constrained anisotropic elastic materials. Arch. Ration. Mech. Anal. 98, 143–190 (1987) Bank, R., Weiser, A.: Some a posteriori error estimators for elliptic partial differential equations. Math. Comput. 44, 283–301 (1985) Braess, D., Verfürth, R.: A posteriori error estimators for the Raviart-Thomas element. SIAM J. Numer. Anal. 33, 2431–2444 (1996) Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods. Springer-Verlag, Berlin-Heidelberg-New York, 1991 Carstensen, C.: A posteriori error estimate for the mixed finite element method. Math. Comput. 66, 465–476 (1997) Carstensen, C., Dolzmann, G.: A posteriori error estimates for mixed fem in elasticity. Numer. Math. 81, 187–209 (1998) Clément, P.: Approximation by finite element functions using local regularization. RAIRO Anal. Numer. 9, 77–84 (1975) Girault, V., Raviart, P.: Finite Element Methods for Navier-Stokes Equations. Springer Verlag, Berlin-Heidelberg-New York, 1986 Lonsing, M.: A posteriori Fehlerschätzer für gemischte Finite Elemente in der linearen Elastizität. PhD thesis, Ruhr-Universität Bochum, Fakultät für Math- ematik, 2002 http://www.ruhr-uni-bochum.de/num1/arbeiten/disslonsing.pdf Lonsing, M., Verfürth, R.: On the stability of BDMS and PEERS elements. Report, Ruhr-Universität Bochum, 2002 Stenberg, R.: A family of mixed finite elements for the elasticity problem. Numer. Math. 53, 513–538 (1988) Verfürth, R.: A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley-Teubner, Chichester-Stuttgart, 1996