A portable near infrared spectroscopy system for bedside monitoring of newborn brain
Tóm tắt
Newborns with critical health conditions are monitored in neonatal intensive care units (NICU). In NICU, one of the most important problems that they face is the risk of brain injury. There is a need for continuous monitoring of newborn's brain function to prevent any potential brain injury. This type of monitoring should not interfere with intensive care of the newborn. Therefore, it should be non-invasive and portable.
In this paper, a low-cost, battery operated, dual wavelength, continuous wave near infrared spectroscopy system for continuous bedside hemodynamic monitoring of neonatal brain is presented. The system has been designed to optimize SNR by optimizing the wavelength-multiplexing parameters with special emphasis on safety issues concerning burn injuries. SNR improvement by utilizing the entire dynamic range has been satisfied with modifications in analog circuitry.
As a result, a shot-limited SNR of 67 dB has been achieved for 10 Hz temporal resolution. The system can operate more than 30 hours without recharging when an off-the-shelf 1850 mAh-7.2 V battery is used. Laboratory tests with optical phantoms and preliminary data recorded in NICU demonstrate the potential of the system as a reliable clinical tool to be employed in the bedside regional monitoring of newborn brain metabolism under intensive care.
Từ khóa
Tài liệu tham khảo
Villringer A, Chance B: Non-invasive optical spectroscopy and imaging of human brain function. Trends in Neurosciences 1997, 20(10):435–42. 10.1016/S0166-2236(97)01132-6
Strangman G, Boas DA, Sutton JP: Non-invasive neuroimaging using near-infrared light. Biological Psychiatry 2002, 52(7):679–93. 10.1016/S0006-3223(02)01550-0
Skov L, Brun NC, Greisen G: Neonatal Intensive Care: Obvious Yet Difficult Area for Cerebral Near Infrared Spectroscopy. Journal of Biomedical Optics 1997, 2(1):7–14.
Wyatt JS, Cope M, Delpy DT, Wray S, Reynolds EOR: Quantification of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectrophotometry. Lancet 1986, 8515: 1063–1066. 10.1016/S0140-6736(86)90467-8
Chance B, Anday E, Nioka S, Zhou S, Hong L, Worden K, Li C, Murray T, Ovetsky Y, Pidikiti D, Thomas R: A novel method for fast imaging of brain function, non-invasively, with light. Optics Express 1998, 2: 411–423.
Siegel AM, Marota JJA, Boas DA: Design and evaluation of a continuous-wave diffuse optical tomography system. Optics Express 1999, 4: 287–298.
Schmidt FEW, Fry ME, Hillman EMC, Hebden JC, Delpy DT: A 32-channel time-resolved instrument for medical optical tomography. Review of Scientific Instruments 2000, 71: 256–265. 10.1063/1.1150191
du Plessis AJ: Near-infrared spectroscopy for the in vivo study of cerebral hemodynamics and oxygenation. Current Opinion in Pediatrics 1995, 7: 632–639.
Meek JH, Firbank M, Elwell CE, Atkinson J, Braddick O, Wyatt JS: Regional hemodynamic responses to visual stimulation in awake infants. Pediatric Research 1998, 43: 840–843.
Sakatani K, Chen S, Lichty W, Zuo H, Wang Y: Cerebral blood oxygenation changes induced by auditory stimulation in newborn infants measured by near infrared spectroscopy. Early Human Development 1999, 55: 229–236. 10.1016/S0378-3782(99)00019-5
Zaramella P, Freato F, Amigoni A, Salvadori S, Marangoni P, Suppjei A, Schiavo B, Chiandetti L: Brain auditory activation measured by near-infrared spectroscopy (NIRS) in neonates. Pediatric Research 2001, 49: 213–219.
Taga G, Asakawa K, Hirasawa K, Konishi Y: Hemodynamic responses to visual stimulation in occipital and frontal cortex of newborn infants: a near-infrared optical topography study. Early Hum Dev 2003, 75(Suppl):S203–10. 10.1016/j.earlhumdev.2003.08.023
Hintz SR, Benaron DA, Siegel AM, Zourabian A, Stevenson DK, Boas DA: Bedside functional imaging of the premature infant brain during passive motor activation. Journal of Perinatal Medicine 2001, 29: 335–343. 10.1515/JPM.2001.048
Cope M, Delpy DT: System for long-term measurement of cerebral blood flow and tissue oxygenation on newborn infants by infrared transillumination. Med Biol Eng Comput 1998, 26: 289–294.
Cope M: The Development of a Near-Infrared Spectroscopy System and Its Application for Noninvasive Monitoring of Cerebral Blood and Tissue Oxygenation in the Newborn Infant. University College London, London; 1991.
Boas DA, Franceschini MA, Dunn AK, Strangman G: "Noninvasive Imaging of Cerebral Activation with Diffuse Optical Tomography.". In In Vivo Optical Imaging of Brain Function. Edited by: Frostig RD. Boca Raton: CRC Press; 2002:193–221.
Wray S, Cope M, Delpy DT, Wyatt JS, Reynolds EO: Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation. Biochim Biophys Acta 1988, 933(1):184–92.
Van der Zee P, Cope M, Arridge SR, et al.: Experimentally measured optical pathlengths for the adult's head, calf and forearm and the head of the newborn infant as a function of interoptode spacing. Adv Exp Med Biol 1992, 316: 143–153.
Hazinski MF: Pediatric Evaluation and Monitoring Considerations. In Hemodynamic Monitoring: Invasive and Noninvasive Clinical Application. Edited by: Darovic GO. Philadelphia, PA: W.B.Saunders; 2002:471–514.
Benaron DA, Kurth CD, Steven JM, Delivoria-Papadopoulos M, Chance B: Transcranial optical path length in infants by near-infrared phase-shift spectroscopy. J Clin Monit 1995, 11(2):109–17. 10.1007/BF01617732
Yamashita Y, Maki A, Koizumi H: Wavelength dependence of the precision of noninvasive optical measurement of oxy-, deoxy-, and total-hemoglobin concentration. Med Phys 2001, 28(6):1108–14.
Bozkurt A, Onaral B: Safety assessment of near infrared light emitting diodes for diffuse optical measurements. BioMedical Engineering OnLine 2004, 3: 9. 10.1186/1475-925X-3-9