A polynomial algorithm for the min-cut linear arrangement of trees

Journal of the ACM - Tập 32 Số 4 - Trang 950-988 - 1985
Mihalis Yannakakis1
1AT&T Bell Laboratories, Murray Hill, NJ

Tóm tắt

An algorithm is presented that finds a min-cut linear arrangement of a tree in O ( n log n ) time. An extension of the algorithm determines the number of pebbles needed to play the black and white pebble game on a tree.

Từ khóa


Tài liệu tham khảo

BRENT R.P., 1980, the area of binary tree layouts, Inf. Proc. Lett., 11, 44, 10.1016/0020-0190(80)90034-4

CHUNG F. R., 1981, The Theory and Applications of Graphs, 255

CHUNG F. R. K.On the cutwidth and the topological bandwidth of a tree. SIAM J. Alg. Disc. Meth. to appear. CHUNG F. R. K.On the cutwidth and the topological bandwidth of a tree. SIAM J. Alg. Disc. Meth. to appear.

CHUNG F.R., 1984, On optimal linear arrangements of trees, Comput. Math. Applic., 10, 43, 10.1016/0898-1221(84)90085-3

CHUNG M., 1982, Proceedings of the 23rd Annual Symposium on the Foundations of Computer Science. IEEE, 262

COOK S.A., 1976, Storage requirements for deterministic polynomial finite recognizable languages, J. Comput. Syst. Sci., 13, 25, 10.1016/S0022-0000(76)80048-7

DOLEV D., 1982, Calif.

FELLER A., 1976, Proceedings of the 13th Annual Design Automation Conference. IEEE, 79

FISHER M.J., 1980, Proceedings of the 12th Annual ACM Symposium on the Theory of Computing, I77

FOSTER M.J., 1981, VLSI-81, 75

GAREY M.R., 1979, Calif.

GAREY M. R., 1978, Complexity results for bandwidth minimization, SlAM J. Appl. Math., 34, 477, 10.1137/0134037

GAVRIL F., 1977, Proceedings of the llth Conference on Information Sciences and Systems, 91

GILBERT J.R., 1980, The pebbling problem is complete in polynomial space, SIAM J. Comput., 9, 3, 10.1137/0209038

GOLBERG M., 1976, An algorithm of a minimal placing of a tree on the line, Sakharth. SSR Mech. Acad. Moambe, 83, 553

LEISERSON C.E., 1980, Proceedings of the 21st Annual Symposium on Foundations of Computer Science. IEEE, 270

LENGAUER T, 1982, Upper and lower bounds on the complexity of the min-cut linear arrangement problem on trees, SIAM J. Alg. Disc. Meth., 3, 99, 10.1137/0603010

LENGAUER T. Black-white pebbles and graph separation. AT&T Bell Laboratory Memorandum. AT&T Bell Laboratories Murray Hill N.J. LENGAUER T. Black-white pebbles and graph separation. AT&T Bell Laboratory Memorandum. AT&T Bell Laboratories Murray Hill N.J.

LENGAUER T., 1980, The space complexity of pebble games on trees, Inf. Proc. Lett., 10, 184, 10.1016/0020-0190(80)90136-2

LOUI M.C., 1979, Mass.

MAKEDON F., 1983, Proceedings of the lOth International Colloquium on Automata, Languages, and Programming, 478, 10.1007/BFb0036931

MAKEDON F. PAPADIMITRIOU C.H. AND SUDBOROUGH I.H. Topological bandwidth. SIAM J. Alg. Disc. Meth. to appear. MAKEDON F. PAPADIMITRIOU C.H. AND SUDBOROUGH I.H. Topological bandwidth. SIAM J. Alg. Disc. Meth. to appear.

MEGGIDO N., 1981, Proceedings of the 12th Annual Symposium on Foundations of Computer Science. IEEE, 376

MEYER AUF DER HEIDE F. A comparison between two variations of a pebble game on graphs. Theor. Comput. Sci 13 ( 1981 ) 315-322. MEYER AUF DER HEIDE F. A comparison between two variations of a pebble game on graphs. Theor. Comput. Sci 13 ( 1981 ) 315-322.

PERSKY G., 1977, LTX-A minicomputer-based system for automated LSI layout, J. Des. Autom. Fault Tolerant Comput., 1, 217

SHILOACH Y, 1979, A minimum linear arrangement algorithm for undirected trees, SIAM J. Comput., 8, 15, 10.1137/0208002

VALIANT L.G, Universality considerations in VLSI circuits, IEEE Trans. Comput. C-30, 2, 135