Journal of the ACM
0004-5411
1557-735X
Mỹ
Cơ quản chủ quản: Association for Computing Machinery (ACM) , ASSOC COMPUTING MACHINERY
Các bài báo tiêu biểu
The network structure of a hyperlinked environment can be a rich source of information about the content of the environment, provided we have effective means for understanding it. We develop a set of algorithmic tools for extracting information from the link structures of such environments, and report on experiments that demonstrate their effectiveness in a variety of context on the World Wide Web. The central issue we address within our framework is the distillation of broad search topics, through the discovery of “authorative” information sources on such topics. We propose and test an algorithmic formulation of the notion of authority, based on the relationship between a set of relevant authoritative pages and the set of “hub pages” that join them together in the link structure. Our formulation has connections to the eigenvectors of certain matrices associated with the link graph; these connections in turn motivate additional heuristrics for link-based analysis.
This article is about a curious phenomenon. Suppose we have a data matrix, which is the superposition of a low-rank component and a sparse component. Can we recover each component individually? We prove that under some suitable assumptions, it is possible to recover both the low-rank and the sparse components
Consider a set of
Subgraph isomorphism can be determined by means of a brute-force tree-search enumeration procedure. In this paper a new algorithm is introduced that attains efficiency by inferentially eliminating successor nodes in the tree search. To assess the time actually taken by the new algorithm, subgraph isomorphism, clique detection, graph isomorphism, and directed graph isomorphism experiments have been carried out with random and with various nonrandom graphs.
A parallel asynchronous logic-in-memory implementation of a vital part of the algorithm is also described, although this hardware has not actually been built. The hardware implementation would allow very rapid determination of isomorphism.
A new mathematical method is developed for interpolation from a given set of data points in a plane and for fitting a smooth curve to the points. This method is devised in such a way that the resultant curve will pass through the given points and will appear smooth and natural. It is based on a piecewise function composed of a set of polynomials, each of degree three, at most, and applicable to successive intervals of the given points. In this method, the slope of the curve is determined at each given point locally, and each polynomial representing a portion of the curve between a pair of given points is determined by the coordinates of and the slopes at the points. Comparison indicates that the curve obtained by this new method is closer to a manually drawn curve than those drawn by other mathematical methods.
It has been observed by many people that a striking number of quite diverse mathematical problems can be formulated as problems in integer programming, that is, linear programming problems in which some or all of the variables are required to assume integral values. This fact is rendered quite interesting by recent research on such problems, notably by R. E. Gomory [2, 3], which gives promise of yielding efficient computational techniques for their solution. The present paper provides yet another example of the versatility of integer programming as a mathematical modeling device by representing a generalization of the well-known “Travelling Salesman Problem” in integer programming terms. The authors have developed several such models, of which the one presented here is the most efficient in terms of generality, number of variables, and number of constraints. This model is due to the second author [4] and was presented briefly at the Symposium on Combinatorial Problems held at Princeton University, April 1960, sponsored by SIAM and IBM. The problem treated is: (1) A salesman is required to visit each of
Note that if
Let
If
Consider a feasible solution to (2).
The number of returns to city 0 is given by ∑
Since none of the
But we have
Conversely, if the
The above integer program involves
The currently known integer programming procedures are sufficiently regular in their behavior to cast doubt on the heuristic value of machine experiments with our model. However, it seems appropriate to report the results of the five machine experiments we have conducted so far. The solution procedure used was the all-integer algorithm of R. E. Gomory [3] without the ranking procedure he describes.
The first three experiments were simple model verification tests on a four-city standard traveling salesman problem with distance matrix [ 20 23 4 30 7 27 25 5 25 3 21 26 ]
The first experiment was with a model, now obsolete, using roughly twice as many constraints and variables as the current model (for this problem, 28 constraints in 21 variables). The machine was halted after 4000 pivot steps had failed to produce a solution.
The second experiment used the earlier model with the
The third experiment used the current formulation with the
The fourth and fifth experiments were used on a standard ten-city problem, due to Barachet, solved by Dantzig, Johnson and Fulkerson [1]. The current formulation was used, yielding 91 constraints in 81 variables. The fifth problem differed from the fourth only in that the ordering of the rows was altered to attempt to introduce more favorable pivot choices. In each case the machine was stopped after over 250 pivot steps had failed to produce the solution. In each case the last 100 pivot steps had failed to change the value of the objective function.
It seems hopeful that more efficient integer programming procedures now under development will yield a satisfactory algorithmic solution to the traveling salesman problem, when applied to this model. In any case, the model serves to illustrate how problems of this sort may be succinctly formulated in integer programming terms.