A plastome primer set for comprehensive quantitative real time RT-PCR analysis of Zea mays: a starter primer set for other Poaceae species

Richard M. Sharpe1, Sade N Dunn1, A. Bruce Cahoon1
1Department of Biology, Middle Tennessee State University, Murfreesboro, TN USA

Tóm tắt

Abstract Background Quantitative Real Time RT-PCR (q2(RT)PCR) is a maturing technique which gives researchers the ability to quantify and compare very small amounts of nucleic acids. Primer design and optimization is an essential yet time consuming aspect of using q2(RT)PCR. In this paper we describe the design and empirical optimization of primers to amplify and quantify plastid RNAs from Zea mays that are robust enough to use with other closely related species. Results Primers were designed and successfully optimized for 57 of the 104 reported genes in the maize plastome plus two nuclear genes. All 59 primer pairs produced single amplicons after end-point reverse transcriptase polymerase chain reactions (RT-PCR) as visualized on agarose gels and subsequently verified by q2(RT)PCR. Primer pairs were divided into several categories based on the optimization requirements or the uniqueness of the target gene. An in silico test suggested the majority of the primer sets should work with other members of the Poaceae family. An in vitro test of the primer set on two unsequenced species (Panicum virgatum and Miscanthus sinensis) supported this assumption by successfully producing single amplicons for each primer pair. Conclusion Due to the highly conserved chloroplast genome in plant families it is possible to utilize primer pairs designed against one genomic sequence to detect the presence and abundance of plastid genes or transcripts from genomes that have yet to be sequenced. Analysis of steady state transcription of vital system genes is a necessary requirement to comprehensively elucidate gene expression in any organism. The primer pairs reported in this paper were designed for q2(RT)PCR of maize chloroplast genes but should be useful for other members of the Poaceae family. Both in silico and in vitro data are presented to support this assumption.

Từ khóa


Tài liệu tham khảo

Vothknecht UC, Westhoff P: Biogenesis and origin of thylakoid membranes. Biochim Biophys Acta. 2001, 1541: 91-101. 10.1016/S0167-4889(01)00153-7.

De Las Rivas J, Lozano JJ, Ortiz AR: Comparative analysis of chloroplast genomes: functional annotation, genome-based phylogeny, and deduced evolutionary patterns. Genome Res. 2002, 12: 567-583. 10.1101/gr.209402.

Brendel V, Kurtz S, Walbot V: Comparative genomics of Arabidopsis and maize: prospects and limitations. Genome Biol. 2002, 3: REVIEWS1005-10.1186/gb-2002-3-3-reviews1005.

Chandler VL, Brendel V: The Maize Genome Sequencing Project. Plant Physiol. 2002, 130: 1594-1597. 10.1104/pp.015594.

Dong Q, Roy L, Freeling M, Walbot V, Brendel V: ZmDB, an integrated database for maize genome research. Nucleic Acids Res. 2003, 31: 244-247. 10.1093/nar/gkg082.

Stern DB, Hanson MR, Barkan A: Genetics and genomics of chloroplast biogenesis: maize as a model system. Trends Plant Sci. 2004, 9: 293-301. 10.1016/j.tplants.2004.04.001.

Morrow WR, Griffin WM, Matthews HS: Modeling switchgrass derived cellulosic ethanol distribution in the United States. Environ Sci Technol. 2006, 40: 2877-2886. 10.1021/es048296m.

Majeran W, Cai Y, Sun Q, van Wijk KJ: Functional differentiation of bundle sheath and mesophyll maize chloroplasts determined by comparative proteomics. Plant Cell. 2005, 17: 3111-3140. 10.1105/tpc.105.035519.

Darie CC, Biniossek ML, Winter V, Mutschler B, Haehnel W: Isolation and structural characterization of the Ndh complex from mesophyll and bundle sheath chloroplasts of Zea mays. Febs J. 2005, 272: 2705-2716. 10.1111/j.1742-4658.2005.04685.x.

Romanowska E, Drozak A, Pokorska B, Shiell BJ, Michalski WP: Organization and activity of photosystems in the mesophyll and bundle sheath chloroplasts of maize. J Plant Physiol. 2006, 163: 607-618. 10.1016/j.jplph.2005.06.007.

Ramakers C, Ruijter JM, Deprez RH, Moorman AF: Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett. 2003, 339: 62-66. 10.1016/S0304-3940(02)01423-4.

Brunner AM, Yakovlev IA, Strauss SH: Validating internal controls for quantitative plant gene expression studies. BMC Plant Biol. 2004, 4: 14-10.1186/1471-2229-4-14.

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol. 1990, 215: 403-410.

Demesure B, Sodzi N, Petit RJ: A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. Mol Ecol. 1995, 4: 129-131. 10.1111/j.1365-294X.1995.tb00201.x.

Dumolin-Lapegue S, Pemonge MH, Petit RJ: An enlarged set of consensus primers for the study of organelle DNA in plants. Mol Ecol. 1997, 6: 393-397. 10.1046/j.1365-294X.1997.00193.x.

Hamilton MB: Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation. Mol Ecol. 1999, 8: 521-523.

Dhingra A, Folta KM: ASAP: amplification, sequencing & annotation of plastomes. BMC Genomics. 2005, 6: 176-10.1186/1471-2164-6-176.

Heinze B: A database of PCR primers for the chloroplast genomes of higher plants. Plant Methods. 2007, 3: 4-10.1186/1746-4811-3-4.

NCBI: The National Center for Biotechnology Information. [http://www.ncbi.nlm.nih.gov/blast]

Rozen S, Skaletsky HJ: Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol. Edited by: Krawetz S, Misener S. 2000, Humana Press, Totowa, NJ, 365-386.

Zuker M: Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003, 31: 3406-3415. 10.1093/nar/gkg595.

Sambrook J, Russell DW: Molecular cloning: a laboratory manual. 2001, Cold Spring Harbor Laboratory Press, New York, 3

Cahoon AB, Harris FM, Stern DB: Analysis of developing maize plastids reveals two mRNA stability classes correlating with RNA polymerase type. EMBO Reports. 2004, 5: 801-806. 10.1038/sj.embor.7400202.

Cahoon AB, Takacs EM, Sharpe RM, Stern DB: Nuclear, Chloroplast, and Mitochondrial Transcript Abundance Along a Maize Leaf Developmental Gradient. Plant Molecular Biology. 2008, 66: 33-46. 10.1007/s11103-007-9250-z.