A numerical algorithm for a class of BSDEs via the branching process
Tóm tắt
Từ khóa
Tài liệu tham khảo
Athreya, 1972, Band 196
Bouchard, 2004, Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations, Stochastic Process. Appl., 111, 175, 10.1016/j.spa.2004.01.001
Dynkin, 2004, vol. 34
I. Ekren, C. Keller, N. Touzi, J. Zhang, On viscosity solutions of path dependent PDEs, Ann. Probab. (to appear).
I. Ekren, N. Touzi, J. Zhang, Viscosity solutions of fully nonlinear path dependent PDEs: part I, Preprint, 2012.
I. Ekren, N. Touzi, J. Zhang, Viscosity solutions of fully nonlinear path dependent PDEs: part II, Preprint, 2012.
El Karoui, 1997, Backward stochastic differential equations in finance, Math. Finance, 7, 1, 10.1111/1467-9965.00022
Etheridge, 2000
Graham, 2011
P. Henry-Labordère, Cutting CVA’s complexity, risk magazine, extended version: counterparty risk valuation: a marked branching diffusion approach, SSRN, July 2012. http://ssrn.com/abstract=1995503.
Kersting, 1995, Sharp conditions for nonexplosions and explosions in Markov jump processes, Ann. Probab., 23, 268, 10.1214/aop/1176988386
Kloeden, 1992, vol. 23
McKean, 1975, Application of Brownian motion to the equation of Kolmogorov–Petrovskii–Piskunov, Comm. Pure Appl. Math., 28, 323, 10.1002/cpa.3160280302
Nutz, 2013, Constructing sublinear expectations on path space, Stochastic Process. Appl., 123, 3100, 10.1016/j.spa.2013.03.022
Pardoux, 1990, Adapted solutions of backward stochastic differential equations, Systems Control Lett., 14, 55, 10.1016/0167-6911(90)90082-6
Protter, 2005, vol. 21
Rasulov, 2010, Monte Carlo solution of Cauchy problem for a nonlinear parabolic equation, Math. Comput. Simul., 80, 1118, 10.1016/j.matcom.2009.12.009
Stroock, 1979
Teschl, 2012, vol. 140
Watanabe, 1964, On the branching process for Brownian particles with an absorbing boundary, J. Math. Kyoto Univ., 4, 385, 10.1215/kjm/1250524667