A novel superfamily containing the β-grasp fold involved in binding diverse soluble ligands

A. Maxwell Burroughs1, S. Balaji1, Lakshminarayan M. Iyer1, L. Aravind1
1National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA

Tóm tắt

AbstractBackgroundDomains containing the β-grasp fold are utilized in a great diversity of physiological functions but their role, if any, in soluble or small molecule ligand recognition is poorly studied.ResultsUsing sensitive sequence and structure similarity searches we identify a novel superfamily containing the β-grasp fold. They are found in a diverse set of proteins that include the animal vitamin B12 uptake proteins transcobalamin and intrinsic factor, the bacterial polysaccharide export proteins, the competence DNA receptor ComEA, the cob(I)alamin generating enzyme PduS and the Nqo1 subunit of the respiratory electron transport chain. We present evidence that members of this superfamily are likely to bind a range of soluble ligands, including B12. There are two major clades within this superfamily, namely the transcobalamin-like clade and the Nqo1-like clade. The former clade is typified by an insert of a β-hairpin after the helix of the β-grasp fold, whereas the latter clade is characterized by an insert between strands 4 and 5 of the core fold.ConclusionMembers of both clades within this superfamily are predicted to interact with ligands in a similar spatial location, with their specific inserts playing a role in the process. Both clades are widely represented in bacteria suggesting that this superfamily was derived early in bacterial evolution. The animal lineage appears to have acquired the transcobalamin-like proteins from low GC Gram-positive bacteria, and this might be correlated with the emergence of the ability to utilize B12 produced by gut bacteria.ReviewersThis article was reviewed by Andrei Osterman, Igor Zhulin, and Arcady Mushegian.

Từ khóa


Tài liệu tham khảo

Kraulis PJ: Similarity of protein G and ubiquitin. Science 1991,254(5031):581-582. 10.1126/science.1658931

Murzin AG: Familiar strangers. Nature 1992,360(6405):635. 10.1038/360635a0

Hershko A, Ciechanover A: The ubiquitin system. Annu Rev Biochem 1998, 67: 425-479. 10.1146/annurev.biochem.67.1.425

Wolf YI, Aravind L, Grishin NV, Koonin EV: Evolution of aminoacyl-tRNA synthetases--analysis of unique domain architectures and phylogenetic trees reveals a complex history of horizontal gene transfer events. Genome Res 1999,9(8):689-710.

Chishti AH, Kim AC, Marfatia SM, Lutchman M, Hanspal M, Jindal H, Liu SC, Low PS, Rouleau GA, Mohandas N, Chasis JA, Conboy JG, Gascard P, Takakuwa Y, Huang SC, Benz EJ Jr., Bretscher A, Fehon RG, Gusella JF, Ramesh V, Solomon F, Marchesi VT, Tsukita S, Tsukita S, Hoover KB, et al.: The FERM domain: a unique module involved in the linkage of cytoplasmic proteins to the membrane. Trends Biochem Sci 1998,23(8):281-282. 10.1016/S0968-0004(98)01237-7

Rudolph MJ, Wuebbens MM, Rajagopalan KV, Schindelin H: Crystal structure of molybdopterin synthase and its evolutionary relationship to ubiquitin activation. Nat Struct Biol 2001,8(1):42-46. 10.1038/83034

SCOP database [http://scop.mrc-lmb.cam.ac.uk/scop/].

Iyer LM, Burroughs AM, Aravind L: The prokaryotic antecedents of the ubiquitin-signaling system and the early evolution of ubiquitin-like beta-grasp domains. Genome Biol 2006,7(7):R60. 10.1186/gb-2006-7-7-r60

Moestrup SK: New insights into carrier binding and epithelial uptake of the erythropoietic nutrients cobalamin and folate. Curr Opin Hematol 2006,13(3):119-123. 10.1097/01.moh.0000219654.65538.5b

Wuerges J, Garau G, Geremia S, Fedosov SN, Petersen TE, Randaccio L: Structural basis for mammalian vitamin B12 transport by transcobalamin. Proc Natl Acad Sci U S A 2006,103(12):4386-4391. 10.1073/pnas.0509099103

Schmehl M, Jahn A, Meyer zu Vilsendorf A, Hennecke S, Masepohl B, Schuppler M, Marxer M, Oelze J, Klipp W: Identification of a new class of nitrogen fixation genes in Rhodobacter capsulatus: a putative membrane complex involved in electron transport to nitrogenase. Mol Gen Genet 1993,241(5-6):602-615. 10.1007/BF00279903

Sazanov LA, Hinchliffe P: Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science 2006,311(5766):1430-1436. 10.1126/science.1123809

Mossessova E, Lima CD: Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Mol Cell 2000,5(5):865-876. 10.1016/S1097-2765(00)80326-3

Overbeek R, Fonstein M, D'Souza M, Pusch GD, Maltsev N: The use of gene clusters to infer functional coupling. Proc Natl Acad Sci U S A 1999,96(6):2896-2901. 10.1073/pnas.96.6.2896

Huynen M, Snel B, Lathe W 3rd, Bork P: Predicting protein function by genomic context: quantitative evaluation and qualitative inferences. Genome Res 2000,10(8):1204-1210. 10.1101/gr.10.8.1204

Wolf YI, Rogozin IB, Kondrashov AS, Koonin EV: Genome alignment, evolution of prokaryotic genome organization and prediction of gene function using genomic context. Genome Res 2001, 11: 356-372. 10.1101/gr.GR-1619R

Fischetti VA, Pancholi V, Schneewind O: Conservation of a hexapeptide sequence in the anchor region of surface proteins from gram-positive cocci. Mol Microbiol 1990,4(9):1603-1605. 10.1111/j.1365-2958.1990.tb02072.x

Williams RJ, Henderson B, Sharp LJ, Nair SP: Identification of a fibronectin-binding protein from Staphylococcus epidermidis. Infect Immun 2002,70(12):6805-6810. 10.1128/IAI.70.12.6805-6810.2002

Aravind L, Anantharaman V, Iyer LM: Evolutionary connections between bacterial and eukaryotic signaling systems: a genomic perspective. Curr Opin Microbiol 2003,6(5):490-497. 10.1016/j.mib.2003.09.003

Aravind L, Koonin EV: Gleaning non-trivial structural, functional and evolutionary information about proteins by iterative database searches. J Mol Biol 1999,287(5):1023-1040. 10.1006/jmbi.1999.2653

Hofmann BE, Bender H, Schulz GE: Three-dimensional structure of cyclodextrin glycosyltransferase from Bacillus circulans at 3.4 A resolution. J Mol Biol 1989,209(4):793-800. 10.1016/0022-2836(89)90607-4

Ulstrup JC, Jeansson S, Wiker HG, Harboe M: Relationship of secretion pattern and MPB70 homology with osteoblast-specific factor 2 to osteitis following Mycobacterium bovis BCG vaccination. Infect Immun 1995,63(2):672-675.

Clout NJ, Tisi D, Hohenester E: Novel fold revealed by the structure of a FAS1 domain pair from the insect cell adhesion molecule fasciclin I. Structure 2003,11(2):197-203. 10.1016/S0969-2126(03)00002-9

Rodionov DA, Hebbeln P, Gelfand MS, Eitinger T: Comparative and functional genomic analysis of prokaryotic nickel and cobalt uptake transporters: evidence for a novel group of ATP-binding cassette transporters. J Bacteriol 2006,188(1):317-327. 10.1128/JB.188.1.317-327.2006

Kisker C, Schindelin H, Pacheco A, Wehbi WA, Garrett RM, Rajagopalan KV, Enemark JH, Rees DC: Molecular basis of sulfite oxidase deficiency from the structure of sulfite oxidase. Cell 1997,91(7):973-983. 10.1016/S0092-8674(00)80488-2

McNulty C, Thompson J, Barrett B, Lord L, Andersen C, Roberts IS: The cell surface expression of group 2 capsular polysaccharides in Escherichia coli: the role of KpsD, RhsA and a multi-protein complex at the pole of the cell. Mol Microbiol 2006,59(3):907-922. 10.1111/j.1365-2958.2005.05010.x

Inamine GS, Dubnau D: ComEA, a Bacillus subtilis integral membrane protein required for genetic transformation, is needed for both DNA binding and transport. J Bacteriol 1995,177(11):3045-3051.

Provvedi R, Dubnau D: ComEA is a DNA receptor for transformation of competent Bacillus subtilis. Mol Microbiol 1999,31(1):271-280. 10.1046/j.1365-2958.1999.01170.x

Iyer LM, Koonin EV, Aravind L: Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases. BMC Struct Biol 2003, 3: 1. 10.1186/1472-6807-3-1

Sampson EM, Johnson CL, Bobik TA: Biochemical evidence that the pduS gene encodes a bifunctional cobalamin reductase. Microbiology 2005,151(Pt 4):1169-1177. 10.1099/mic.0.27755-0

Bobik TA, Havemann GD, Busch RJ, Williams DS, Aldrich HC: The propanediol utilization (pdu) operon of Salmonella enterica serovar Typhimurium LT2 includes genes necessary for formation of polyhedral organelles involved in coenzyme B(12)-dependent 1, 2-propanediol degradation. J Bacteriol 1999,181(19):5967-5975.

Perham RN: Swinging arms and swinging domains in multifunctional enzymes: catalytic machines for multistep reactions. Annu Rev Biochem 2000, 69: 961-1004. 10.1146/annurev.biochem.69.1.961

Anantharaman V, Koonin EV, Aravind L: Regulatory potential, phyletic distribution and evolution of ancient, intracellular small-molecule-binding domains. J Mol Biol 2001,307(5):1271-1292. 10.1006/jmbi.2001.4508

Yamanishi M, Ide H, Murakami Y, Toraya T: Identification of the 1,2-propanediol-1-yl radical as an intermediate in adenosylcobalamin-dependent diol dehydratase reaction. Biochemistry 2005,44(6):2113-2118. 10.1021/bi0481850

Leonard PM, Smits SH, Sedelnikova SE, Brinkman AB, de Vos WM, van der Oost J, Rice DW, Rafferty JB: Crystal structure of the Lrp-like transcriptional regulator from the archaeon Pyrococcus furiosus. Embo J 2001,20(5):990-997. 10.1093/emboj/20.5.990

Chipman DM, Shaanan B: The ACT domain family. Curr Opin Struct Biol 2001,11(6):694-700. 10.1016/S0959-440X(01)00272-X

Sticht H, Rosch P: The structure of iron-sulfur proteins. Prog Biophys Mol Biol 1998,70(2):95-136. 10.1016/S0079-6107(98)00027-3

Holm L, Sander C: Dali: a network tool for protein structure comparison. Trends Biochem Sci 1995,20(11):478-480. 10.1016/S0968-0004(00)89105-7

Guex N, Peitsch MC: SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 1997,18(15):2714-2723. 10.1002/elps.1150181505

Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997,25(17):3389-3402. 10.1093/nar/25.17.3389

Eddy SR: Profile hidden Markov models. Bioinformatics 1998,14(9):755-763. 10.1093/bioinformatics/14.9.755

Finn RD, Mistry J, Schuster-Bockler B, Griffiths-Jones S, Hollich V, Lassmann T, Moxon S, Marshall M, Khanna A, Durbin R, Eddy SR, Sonnhammer EL, Bateman A: Pfam: clans, web tools and services. Nucleic Acids Res 2006,34(Database issue):D247-51. 10.1093/nar/gkj149

Schaffer AA, Aravind L, Madden TL, Shavirin S, Spouge JL, Wolf YI, Koonin EV, Altschul SF: Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. Nucleic Acids Res 2001,29(14):2994-3005. 10.1093/nar/29.14.2994

Bendtsen JD, Nielsen H, von Heijne G, Brunak S: Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 2004,340(4):783-795. 10.1016/j.jmb.2004.05.028

Krogh A, Larsson B, von Heijne G, Sonnhammer EL: Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 2001,305(3):567-580. 10.1006/jmbi.2000.4315

Notredame C, Higgins DG, Heringa J: T-Coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol 2000,302(1):205-217. 10.1006/jmbi.2000.4042

Edgar RC: MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 2004, 5: 113. 10.1186/1471-2105-5-113

Cuff JA, Clamp ME, Siddiqui AS, Finlay M, Barton GJ: JPred: a consensus secondary structure prediction server. Bioinformatics 1998,14(10):892-893. 10.1093/bioinformatics/14.10.892

BLASTCLUST program [ftp://ftp.ncbi.nih.gov/blast/documents/README.bcl].

Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M, Hirakawa M: From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 2006,34(Database issue):D354-7. 10.1093/nar/gkj102

Walker DR, Koonin EV: SEALS: a system for easy analysis of lots of sequences. Proc Int Conf Intell Syst Mol Biol 1997, 5: 333-339.