A novel somatic BRCA2 point mutation in a metastatic pancreatic cancer patient: a case report
Tóm tắt
In addition to ovarian and breast cancers, loss-of-function mutations in BRCA1 and BRCA2 genes are also linked to an increased risk of pancreatic cancer, with ~ 4 to 7% of pancreatic cancer patients harboring germline BRCA mutations. Most BRCA alterations in pancreatic cancer are frame-shifting indels, stop-gain, and splice-site mutations, but single nucleotide substitutions are rare. Recent studies demonstrated a significant progression-free survival (PFS) benefit from maintenance olaparib, a poly (ADP-ribose) polymerase (PARP) inhibitor administered to patients with germline BRCA mutations and metastatic pancreatic cancer. Here, we report a metastatic pancreatic cancer case who harbored a novel somatic BRCA2 c.6944T > C (p. I2315T) point mutation. After 6 weeks first-line chemotherapy, the patient was refractory to treatment and had a progressive disease. Due to the novel nonsynonymous BRCA2 point mutation, we decided to change the strategy by administering olaparib. The patient benefited from olaparib therapy and achieved a PFS of ~ 6.5 months. We describe a patient carrying a novel somatic BRCA2 p. I2315T point mutation, which is first reported in metastatic pancreatic cancer. This case report indicates that a gene mutation-based strategy should be considered in the clinic to provide more effective treatment.
Tài liệu tham khảo
Ducreux M, Seufferlein T, Van Laethem JL, et al. Systemic treatment of pancreatic cancer revisited. Semin Oncol. 2019;46:28–38.
Gorodetska I, Kozeretska I, Dubrovska A. BRCA genes: the role in genome stability, cancer stemness and therapy Resistance. J Cancer. 2019;10:2109–27.
Welcsh PL, King MC. BRCA1 and BRCA2 and the genetics of breast and ovarian cancer. Hum Mol Genet. 2001;10:705–13.
Ghiorzo P. Genetic predisposition to pancreatic cancer. World J Gastroenterol. 2014;20:10778–89.
Holter S, Borgida A, Dodd A, et al. Germline BRCA mutations in a large clinic-based cohort of patients with pancreatic adenocarcinoma. J Clin Oncol. 2015;33(28):3124–9.
Faraoni I, Graziani G. Role of BRCA mutations in cancer treatment with poly(ADP-ribose) polymerase (PARP) inhibitors. Cancers. 2018;10:487.
Golan T, Hammel P, Reni M, et al. Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. N Engl J Med. 2019;381:317–27.
Hammel P, Kindler HL, Reni M, et al. Health-related quality of life in patients with a germline BRCA mutation and metastatic pancreatic cancer receiving maintenance olaparib. Ann Oncol. 2019;30:1959–68.
Li H, Liu Z-Y, Wu N, et al. PARP inhibitor resistance: the underlying mechanisms and clinical implications. Mol Cancer. 2020;19:107–107.
Robson M, Im S-A, Senkus E, et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med. 2017;377:523–33.
Moore K, Colombo N, Scambia G, et al. Maintenance olaparib in patients with newly diagnosed advanced ovarian cancer. N Engl J Med. 2018;379:2495–505.
Martinez-Useros J, Garcia-Foncillas J. The role of BRCA2 mutation status as diagnostic, predictive, and prognosis biomarker for pancreatic cancer. Biomed Res Int. 2016;2016:1869304.
Mesman RLS, Calleja F, Hendriks G, et al. The functional impact of variants of uncertain significance in BRCA2. Genet Med. 2019;21:293–302.
Juwle A, Saranath D. BRCA1/BRCA2 gene mutations/SNPs and BRCA1 haplotypes in early-onset breast cancer patients of Indian ethnicity. Med Oncol. 2012;29:3272–81.
Borg A, Haile RW, Malone KE, et al. Characterization of BRCA1 and BRCA2 deleterious mutations and variants of unknown clinical significance in unilateral and bilateral breast cancer: the WECARE study. Hum Mutat. 2010;31:E1200–40.
Shahid T, Soroka J, Kong E, et al. Structure and mechanism of action of the BRCA2 breast cancer tumor suppressor. Nat Struct Mol Biol. 2014;21:962–8.