Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Một bộ điều khiển tối ưu mới $${\mathrm{PI}}^{{\uplambda }_{1}}{\mathrm{I}}^{{\uplambda }_{2}}{\mathrm{D}}^{{\upmu }_{1}}{\mathrm{D}}^{{\upmu }_{2}}$$ sử dụng thuật toán tối ưu bướm may cho hệ thống điều chỉnh điện áp tự động
Tóm tắt
Bài báo này trình bày một bộ điều khiển tối ưu mới $${\mathrm{PI}}^{{\uplambda }_{1}}{\mathrm{I}}^{{\uplambda }_{2}}{\mathrm{D}}^{{\upmu }_{1}}{\mathrm{D}}^{{\upmu }_{2}}$$ cho hệ thống điều chỉnh điện áp tự động (AVR). Hệ thống AVR kiểm soát điện áp đầu ra của các máy phát đồng bộ. Theo cách này, nó đóng vai trò quan trọng trong việc ổn định điện áp trong các hệ thống điện. Các tham số của bộ điều khiển đề xuất được tối ưu hóa bằng cách sử dụng thuật toán bướm may mới được phát triển cho nhiều hàm mục tiêu khác nhau. Các hàm mục tiêu này bao gồm: Zwe-Lee Gaing, tích phân của thời gian nhân với lỗi tuyệt đối, tích phân của lỗi bình phương, tích phân của thời gian nhân với lỗi bình phương và tích phân của lỗi tuyệt đối (IAE). Kết quả tốt nhất về mặt các tham số phản hồi tạm thời (thời gian ổn định, thời gian tăng và độ vượt quá tối đa) ở điện áp đầu ra được so sánh với các bộ điều khiển đã được phát triển trong những năm gần đây. Cả phân tích miền thời gian và phân tích miền tần số đều được sử dụng trong so sánh này. Từ các kết quả so sánh, nhận thấy rằng bộ điều khiển đề xuất cung cấp hiệu suất tốt hơn so với các bộ điều khiển hiện có trong tài liệu. Ngoài việc phân tích miền thời gian và tần số, tính ổn định, ảnh hưởng phi tuyến và khả năng chịu các nhiễu bên ngoài của bộ điều khiển đề xuất cũng được phân tích cho hệ thống AVR. Kết quả từ tất cả các phân tích này cho thấy bộ điều khiển đề xuất thể hiện hiệu suất xuất sắc.
Từ khóa
#Bộ điều khiển PI #Hệ thống điều chỉnh điện áp tự động #Tối ưu hóa bướm mayTài liệu tham khảo
Kundur P, Paserba J, Ajjarapu V, Andersson G, Bose A, Canizares C et al (2004) Definition and classification of power system stability. IEEE Trans Power Syst 19:1387–1401. https://doi.org/10.1109/TPWRS.2004.825981
Micev M, Ćalasan M, Oliva D (2020) Fractional order PID controller design for an AVR system using chaotic yellow saddle goatfish algorithm. Mathematics. https://doi.org/10.3390/math8071182
Kundur P, Balu N, Lauby M (1994) Power system stability and control, vol 7. McGraw-hill, New York
Vahid-Pakdel MJ, Seyedi H, Mohammadi-Ivatloo B (2018) Enhancement of power system voltage stability in multi-carrier energy systems. Int J Electr Power Energy Syst 99:344–354. https://doi.org/10.1016/j.ijepes.2018.01.026
Vanfretti L, Arava VSN (2020) Decision tree-based classification of multiple operating conditions for power system voltage stability assessment. Int J Electr Power Energy Syst. https://doi.org/10.1016/j.ijepes.2020.106251
Sahib MA (2015) A novel optimal PID plus second order derivative controller for AVR system. Eng Sci Technol Int J 18:194–206. https://doi.org/10.1016/j.jestch.2014.11.006
El-Deen AT, Hakim Mahmoud AA, El-Sawi AR. (2015) Optimal PID tuning for DC motor speed controller based on genetic algorithm. Int Rev Automat Control 8:80–5. https://doi.org/10.15866/ireaco.v8i1.4839.
Moschos I, Parisses C (2022) A novel optimal PIλDND2N2 controller using coyote optimization algorithm for an AVR system. Eng Sci Technol Int J. https://doi.org/10.1016/j.jestch.2021.04.010
Munagala VK, Jatoth RK (2022) Improved fractional PIλDμ controller for AVR system using Chaotic Black Widow algorithm. Comput Electr Eng. https://doi.org/10.1016/j.compeleceng.2021.107600
Dogruer T, Can MS (2022) Design and robustness analysis of fuzzy PID controller for automatic voltage regulator system using genetic algorithm. Trans Inst Meas Control. https://doi.org/10.1177/01423312211066758
Micev M, Ćalasan M, Ali ZM, Hasanien HM, Abdel Aleem SHE (2021) Optimal design of automatic voltage regulation controller using hybrid simulated annealing—Manta ray foraging optimization algorithm. Ain Shams Eng J 12:641–657. https://doi.org/10.1016/j.asej.2020.07.010
Altbawi SMA, Bin MAS, Jumani TA, Khan I, Hamadneh NN, Khan A (2021) Optimal design of fractional order PID controller based automatic voltage regulator system using gradient-based optimization algorithm. J King Saud Univ Eng Sci. https://doi.org/10.1016/j.jksues.2021.07.009
Tabak A (2021) Maiden application of fractional order PID plus second order derivative controller in automatic voltage regulator. Int Trans Electr Energy Syst. https://doi.org/10.1002/2050-7038.13211
Paliwal N, Srivastava L, Pandit M (2021) Equilibrium optimizer tuned novel FOPID-DN controller for automatic voltage regulator system. Int Trans Electr Energy Syst. https://doi.org/10.1002/2050-7038.12930
Tabak A (2021) A novel fractional order PID plus derivative (PIλDµDµ2) controller for AVR system using equilibrium optimizer. COMPEL Int J Comput Math Electr Electron Eng. https://doi.org/10.1108/COMPEL-02-2021-0044
Ayas MS, Sahin E (2021) FOPID controller with fractional filter for an automatic voltage regulator. Comput Electr Eng. https://doi.org/10.1016/j.compeleceng.2020.106895
Eltag K, Zhang B (2021) Design robust self-tuning FPIDF controller for AVR system. Int J Control Autom Syst 19:910–920. https://doi.org/10.1007/s12555-019-1071-8
Jumani TA, Mustafa MW, Hussain Z, Md. Rasid M, Saeed MS, Memon MM et al (2020) Jaya optimization algorithm for transient response and stability enhancement of a fractional-order PID based automatic voltage regulator system. Alexandria Eng J 59:2429–40. https://doi.org/10.1016/j.aej.2020.03.005
Sumpunsri S, Puangdownreong D. (2020) Multiobjective Lévy-flight firefly algorithm for optimal pida controller design. Int J Innovat Comput Inf Control 16:173–87. https://doi.org/10.24507/ijicic.16.01.173
Kose E (2020) Optimal control of AVR system with tree seed algorithm-based PID controller. IEEE Access 8:89457–89467. https://doi.org/10.1109/ACCESS.2020.2993628
Bhookya J, Jatoth RK (2020) Improved Jaya algorithm-based FOPID/PID for AVR system. COMPEL Int J Comput Math Electr Electron Eng 39:775–90. https://doi.org/10.1108/COMPEL-08-2019-0319
Bhullar AK, Kaur R, Sondhi S (2020) Enhanced crow search algorithm for AVR optimization. Soft Comput 24:11957–11987. https://doi.org/10.1007/s00500-019-04640-w
Sikander A, Thakur P (2020) A new control design strategy for automatic voltage regulator in power system. ISA Trans 100:235–243. https://doi.org/10.1016/j.isatra.2019.11.031
Zhou G, Li J, Tang Z, Luo Q, Zhou Y (2020) An improved spotted hyena optimizer for PID parameters in an AVR system. Math Biosci Eng 17:3767–3783. https://doi.org/10.3934/MBE.2020211
Khan IA, Alghamdi AS, Jumani TA, Alamgir A, Awan AB, Khidrani A (2019) Salp Swarm optimization algorithm-based fractional order PID controller for dynamic response and stability enhancement of an automatic voltage regulator system. Electronics 8:1472. https://doi.org/10.3390/electronics8121472
Ekinci S, Hekimoglu B (2019) Improved kidney-inspired algorithm approach for tuning of PID controller in AVR system. IEEE Access 7:39935–39947. https://doi.org/10.1109/ACCESS.2019.2906980
Blondin MJ, Sicard P, Pardalos PM (2019) Controller tuning approach with robustness, stability and dynamic criteria for the original AVR System. Math Comput Simul 163:168–182. https://doi.org/10.1016/j.matcom.2019.02.019
Bingul Z, Karahan O (2018) A novel performance criterion approach to optimum design of PID controller using cuckoo search algorithm for AVR system. J Franklin Inst 355:5534–5559. https://doi.org/10.1016/j.jfranklin.2018.05.056
Mosaad AM, Attia MA, Abdelaziz AY (2018) Comparative performance analysis of AVR controllers using modern optimization techniques. Electr Power Compon Syst 46:2117–2130. https://doi.org/10.1080/15325008.2018.1532471
Li X, Wang Y, Li N, Han M, Tang Y, Liu F (2017) Optimal fractional order PID controller design for automatic voltage regulator system based on reference model using particle swarm optimization. Int J Mach Learn Cybern 8:1595–1605. https://doi.org/10.1007/s13042-016-0530-2
Güvenç U, Yiǧit T, Işik AH, Akkaya I (2016) Performance analysis of biogeography-based optimization for automatic voltage regulator system. Turk J Electr Eng Comput Sci 24:1150–1162. https://doi.org/10.3906/elk-1311-111
Zeng GQ, Chen J, Dai YX, Li LM, Zheng CW, Chen MR (2015) Design of fractional order PID controller for automatic regulator voltage system based on multi-objective extremal optimization. Neurocomputing 160:173–184. https://doi.org/10.1016/j.neucom.2015.02.051
Mohanty PK, Sahu BK, Panda S (2014) Tuning and assessment of proportional-integral-derivative controller for an automatic voltage regulator system employing local unimodal sampling algorithm. Electr Power Compon Syst 42:959–969. https://doi.org/10.1080/15325008.2014.903546
Ramezanian H, Balochian S, Zare A (2013) Design of optimal fractional-order PID controllers using particle swarm optimization algorithm for automatic voltage regulator (AVR) system. J Control Automat Electr Syst 24:601–611. https://doi.org/10.1007/s40313-013-0057-7
Panda S, Sahu BK, Mohanty PK (2012) Design and performance analysis of PID controller for an automatic voltage regulator system using simplified particle swarm optimization. J Franklin Inst 349:2609–2625. https://doi.org/10.1016/j.jfranklin.2012.06.008
Gozde H, Taplamacioglu MC (2011) Comparative performance analysis of artificial bee colony algorithm for automatic voltage regulator (AVR) system. J Franklin Inst 348:1927–1946. https://doi.org/10.1016/j.jfranklin.2011.05.012
Gozde H, Taplamacioglu MC, Kocaarslan I (2010) Applıcatıon of artıfıcıal bees colony algorıthm ın an automatıc voltage regulator (avr) system. Int J Tech Phys Problems Eng 4:88–92
Ghosh A, Ray AK, Nurujjaman M, Jamshidi M (2021) Voltage and frequency control in conventional and PV integrated power systems by a particle swarm optimized Ziegler-Nichols based PID controller. SN Appl Sci. https://doi.org/10.1007/s42452-021-04327-8
Potnuru D, Alice Mary K, Sai BC (2019) Experimental implementation of flower pollination algorithm for speed controller of a BLDC motor. Ain Shams Eng J 10:287–295. https://doi.org/10.1016/j.asej.2018.07.005
Li Y, Ang KH, Chong GCY (2006) PID control system analysis and design: problems, remedies, and future directions. IEEE Control Syst 26:32–41. https://doi.org/10.1109/MCS.2006.1580152
Forestiero A (2022) Heuristic recommendation technique in Internet of Things featuring swarm intelligence approach. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2021.115904
Dahou A, Abd Elaziz M, Chelloug SA, Awadallah MA, Al-Betar MA, Al-qaness MAA et al (2022) Intrusion detection system for IoT based on deep learning and modified reptile search algorithm. Comput Intell Neurosci 2022:1–15. https://doi.org/10.1155/2022/6473507
Naderi E, Pourakbari-Kasmaei M, Cerna FV, Lehtonen M (2021) A novel hybrid self-adaptive heuristic algorithm to handle single- and multi-objective optimal power flow problems. Int J Electr Power Energy Syst. https://doi.org/10.1016/j.ijepes.2020.106492
Abido MA (2002) Optimal power flow using particle swarm optimization. Int J Electr Power Energy Syst 24:563–571. https://doi.org/10.1016/S0142-0615(01)00067-9
Azizi M, Aickelin U, Khorshidi HA, Shishehgarkhaneh MB (2022) Shape and size optimization of truss structures by Chaos game optimization considering frequency constraints. J Adv Res 41:89–100. https://doi.org/10.1016/j.jare.2022.01.002
Awad R (2021) Sizing optimization of truss structures using the political optimizer (PO) algorithm. Structures 33:4871–4894. https://doi.org/10.1016/j.istruc.2021.07.027
Chen YQ, Petráš I, Xue D. (2009) Fractional order control a tutorial. In: Proceedings of the American control conference, 1397–411. https://doi.org/10.1109/ACC.2009.5160719
Fatoorehchi H, Rach R (2020) A method for inverting the Laplace transforms of two classes of rational transfer functions in control engineering. Alex Eng J 59:4879–4887. https://doi.org/10.1016/j.aej.2020.08.052
Podlubny I (1999) Fractional-order systems and PIλDμ-controllers. IEEE Trans Automat Contr 44:208–214. https://doi.org/10.1109/9.739144
Tepljakov A, Alagoz BB, Yeroglu C, Gonzalez E, HosseinNia SH, Petlenkov E (2018) FOPID controllers and their industrial applications: a survey of recent result. IFAC-PapersOnLine 51:25–30
Podlubny I (1994) Fractional-order systems and fractional-order controllers. Inst Exp Phys Slovak Academy Sci 12:1–18
Karimi-Ghartemani M, Zamani M, Sadati N, Parniani M. (2007) An Optimal Fractional Order Controller for an AVR System Using Particle Swarm Optimization Algorithm. In: 2007 large engineering systems conference on power engineering, IEEE; 244–9. https://doi.org/10.1109/LESCPE.2007.4437386.
Zervoudakis K, Tsafarakis S (2020) A mayfly optimization algorithm. Comput Ind Eng. https://doi.org/10.1016/j.cie.2020.106559
Shayeghi H, Rahnama A, Alhelou HH (2021) Frequency control of fully-renewable interconnected microgrid using fuzzy cascade controller with demand response program considering. Energy Rep 7:6077–6094. https://doi.org/10.1016/j.egyr.2021.09.027
Ramasamy K, Ravichandran CS (2021) Optimal design of renewable sources of PV/wind/FC generation for power system reliability and cost using MA-RBFNN approach. Int J Energy Res 45:10946–10962. https://doi.org/10.1002/er.6578
Abdeen M, Sayyed M, Dominguez-Garcia JL, Kamel S (2022) Supplemental control for system frequency support of DFIG-based wind turbines. IEEE Access. https://doi.org/10.1109/ACCESS.2022.3185780
Zafar MH, Khan NM, Mirza AF, Mansoor M (2021) Bio-inspired optimization algorithms based maximum power point tracking technique for photovoltaic systems under partial shading and complex partial shading conditions. J Clean Prod. https://doi.org/10.1016/j.jclepro.2021.127279
Yousaf MZ, Raza A, Abbas G, Ullah N, Al-ahmadi AA, Yasin AR et al (2022) MTDC Grids: A Metaheuristic Solution for Nonlinear Control. Energies. https://doi.org/10.3390/en15124263
Shah P, Agashe S (2016) Review of fractional PID controller. Mechatronics 38:29–41. https://doi.org/10.1016/j.mechatronics.2016.06.005
Atangana A, Secer A (2013) A note on fractional order derivatives and table of fractional derivatives of some special functions. Abstract Appl Anal. https://doi.org/10.1155/2013/279681
Petráš I (2012) Tuning and implementation methods for fractional-order controllers. Fract Calc Appl Anal 15:282–303. https://doi.org/10.2478/s13540-012-0021-4
Cafagna D (2007) Past and present - fractional calculus: a mathematical tool from the past for present engineers. IEEE Ind Electron Mag 1:35–40. https://doi.org/10.1109/MIE.2007.901479
Oustaloup A, Levron F, Mathieu B, Nanot FM (2000) Frequency-band complex noninteger differentiator: characterization and synthesis. IEEE Trans Circ Syst I Fundam Theory Appl 47:25–39. https://doi.org/10.1109/81.817385
Wiora J, Wiora A (2020) Influence of methods approximating fractional-order differentiation on the output signal illustrated by three variants of oustaloup filter. Symmetry 12:1–19. https://doi.org/10.3390/sym12111898
Xue D, Zhao C, Chen YQ. (2006) A modified approximation method of fractional order system. In: IEEE ınternational conference on mechatronics and automation, ICMA 2006, 1043–1048. https://doi.org/10.1109/ICMA.2006.25776
Bingi K, Ibrahim R, Karsiti MN, Hassam SM, Harindran VR (2019) Frequency response based curve fitting approximation of fractional-order PID controllers. Int J Appl Math Comput Sci 29:311–326. https://doi.org/10.2478/amcs-2019-0023
Xue D, Chen Y, Atherton D (2007) Linear Feedback Control: Analysis and Design with MATLAB. Society for Industrial and Applied Mathematics, Philadelphia
Gaing ZL (2004) A particle swarm optimization approach for optimum design of PID controller in AVR system. IEEE Trans Energy Convers 19:384–391. https://doi.org/10.1109/TEC.2003.821821
Sikander A, Thakur P, Bansal RC, Rajasekar S (2018) A novel technique to design cuckoo search based FOPID controller for AVR in power systems. Comput Electr Eng 70:261–274. https://doi.org/10.1016/j.compeleceng.2017.07.005
Gheisarnejad M (2018) An effective hybrid harmony search and cuckoo optimization algorithm based fuzzy PID controller for load frequency control. Appl Soft Comput J 65:121–138. https://doi.org/10.1016/j.asoc.2018.01.007
Jumani TA, Mustafa MW, Rasid MM, Memon ZA (2020) Dynamic response enhancement of grid-tied ac microgrid using salp swarm optimization algorithm. Int Trans Electr Energy Syst. https://doi.org/10.1002/2050-7038.12321
Sahu RK, Panda S, Padhan S (2014) Optimal gravitational search algorithm for automatic generation control of interconnected power systems. Ain Shams Eng J 5:721–733. https://doi.org/10.1016/j.asej.2014.02.004
Sahu RK, Panda S, Rout UK, Sahoo DK (2016) Teaching learning based optimization algorithm for automatic generation control of power system using 2-DOF PID controller. Int J Electr Power Energy Syst 77:287–301. https://doi.org/10.1016/j.ijepes.2015.11.082