A novel methyl-binding domain protein enrichment method for identifying genome-wide tissue-specific DNA methylation from nanogram DNA samples

Verity F. Oliver1, Jun Wan1, Saurabh Agarwal2,3, Donald J. Zack4,5, Jiang Qian1, Shannath L. Merbs1
1Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, USA
2Division of Biological Sciences, University of California San Diego, La Jolla, USA
3Ludwig Institute for Cancer Research, La Jolla, USA
4Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA
5Institut de la Vision, Paris, France

Tóm tắt

Abstract Background

Growing evidence suggests that DNA methylation plays a role in tissue-specific differentiation. Current approaches to methylome analysis using enrichment with the methyl-binding domain protein (MBD) are restricted to large (≥1 μg) DNA samples, limiting the analysis of small tissue samples. Here we present a technique that enables characterization of genome-wide tissue-specific methylation patterns from nanogram quantities of DNA.

Results

We have developed a methodology utilizing MBD2b/MBD3L1 enrichment for methylated DNA, kinase pre-treated ligation-mediated PCR amplification (MeKL) and hybridization to the comprehensive high-throughput array for relative methylation (CHARM) customized tiling arrays, which we termed MeKL-chip. Kinase modification in combination with the addition of PEG has increased ligation-mediated PCR amplification over 20-fold, enabling >400-fold amplification of starting DNA. We have shown that MeKL-chip can be applied to as little as 20 ng of DNA, enabling comprehensive analysis of small DNA samples. Applying MeKL-chip to the mouse retina (a limited tissue source) and brain, 2,498 tissue-specific differentially methylated regions (T-DMRs) were characterized. The top five T-DMRs (Rgs20, Hes2, Nfic, Cckbr and Six3os1) were validated by pyrosequencing.

Conclusions

MeKL-chip enables genome-wide methylation analysis of nanogram quantities of DNA with a wide range of observed-to-expected CpG ratios due to the binding properties of the MBD2b/MBD3L1 protein complex. This methodology enabled the first analysis of genome-wide methylation in the mouse retina, characterizing novel T-DMRs.

Từ khóa


Tài liệu tham khảo

Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CL: A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci USA. 1992, 89: 1827-1831. 10.1073/pnas.89.5.1827.

Gu H, Bock C, Mikkelsen TS, Jager N, Smith ZD, Tomazou E, Gnirke A, Lander ES, Meissner A: Genome-scale DNA methylation mapping of clinical samples at single-nucleotide resolution. Nat Methods. 2010, 7: 133-136. 10.1038/nmeth.1414.

Bock C, Tomazou EM, Brinkman AB, Muller F, Simmer F, Gu H, Jager N, Gnirke A, Stunnenberg HG, Meissner A: Quantitative comparison of genome-wide DNA methylation mapping technologies. Nat Biotechnol. 2010, 28: 1106-1114. 10.1038/nbt.1681.

Taiwo O, Wilson GA, Morris T, Seisenberger S, Reik W, Pearce D, Beck S, Butcher LM: Methylome analysis using MeDIP-seq with low DNA concentrations. Nat Protoc. 2012, 7: 617-636.

Rauch T, Pfeifer GP: Methylated-CpG island recovery assay: a new technique for the rapid detection of methylated-CpG islands in cancer. Lab Invest. 2005, 85: 1172-1180. 10.1038/labinvest.3700311.

Miura F, Enomoto Y, Dairiki R, Ito T: Amplification-free whole-genome bisulfite sequencing by post-bisulfite adaptor tagging. Nucleic Acids Res. 2012, 40: e136-10.1093/nar/gks454.

Adey A, Shendure J: Ultra-low-input, tagmentation-based whole-genome bisulfite sequencing. Genome Res. 2012, 22: 1139-1143. 10.1101/gr.136242.111.

Seisenberger S, Andrews S, Krueger F, Arand J, Walter J, Santos F, Popp C, Thienpont B, Dean W, Reik W: The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol Cell. 2012, 48: 849-862. 10.1016/j.molcel.2012.11.001.

Gu H, Smith ZD, Bock C, Boyle P, Gnirke A, Meissner A: Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling. Nat Protoc. 2011, 6: 468-481. 10.1038/nprot.2010.190.

Harris RA, Wang T, Coarfa C, Nagarajan RP, Hong C, Downey SL, Johnson BE, Fouse SD, Delaney A, Zhao Y: Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications. Nat Biotechnol. 2010, 28: 1097-1105. 10.1038/nbt.1682.

Nair SS, Coolen MW, Stirzaker C, Song JZ, Statham AL, Strbenac D, Robinson MD, Clark SJ: Comparison of methyl-DNA immunoprecipitation (MeDIP) and methyl-CpG binding domain (MBD) protein capture for genome-wide DNA methylation analysis reveal CpG sequence coverage bias. Epigenetics. 2011, 6: 34-44. 10.4161/epi.6.1.13313.

Shaknovich R, Figueroa ME, Melnick A: HELP (HpaII tiny fragment enrichment by ligation-mediated PCR) assay for DNA methylation profiling of primary normal and malignant B lymphocytes. Methods Mol Biol. 2010, 632: 191-201. 10.1007/978-1-60761-663-4_12.

Dedeurwaerder S, Defrance M, Calonne E, Denis H, Sotiriou C, Fuks F: Evaluation of the Infinium Methylation 450K technology. Epigenomics. 2011, 3: 771-784. 10.2217/epi.11.105.

Irizarry RA, Ladd-Acosta C, Carvalho B, Wu H, Brandenburg SA, Jeddeloh JA, Wen B, Feinberg AP: Comprehensive high-throughput arrays for relative methylation (CHARM). Genome Res. 2008, 18: 780-790. 10.1101/gr.7301508.

Lee RS, Tamashiro KL, Aryee MJ, Murakami P, Seifuddin F, Herb B, Huo Y, Rongione M, Feinberg AP, Moran TH, Potash JB: Adaptation of the CHARM DNA methylation platform for the rat genome reveals novel brain region-specific differences. Epigenetics. 2011, 6: 1378-1390. 10.4161/epi.6.11.18072.

Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, Cui H, Gabo K, Rongione M, Webster M: The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet. 2009, 41: 178-186. 10.1038/ng.298.

Ren B, Robert F, Wyrick JJ, Aparicio O, Jennings EG, Simon I, Zeitlinger J, Schreiber J, Hannett N, Kanin E: Genome-wide location and function of DNA binding proteins. Science. 2000, 290: 2306-2309. 10.1126/science.290.5500.2306.

Pheiffer BH, Zimmerman SB: Polymer-stimulated ligation: enhanced blunt- or cohesive-end ligation of DNA or deoxyribooligonucleotides by T4 DNA ligase in polymer solutions. Nucleic Acids Res. 1983, 11: 7853-7871. 10.1093/nar/11.22.7853.

Merbs SL, Khan MA, Hackler L, Oliver VF, Wan J, Qian J, Zack DJ: Cell-specific DNA methylation patterns of retina-specific genes. PLoS One. 2012, 7: e32602-10.1371/journal.pone.0032602.

Bartolomei MS, Webber AL, Brunkow ME, Tilghman SM: Epigenetic mechanisms underlying the imprinting of the mouse H19 gene. Genes Dev. 1993, 7: 1663-1673. 10.1101/gad.7.9.1663.

Barker SA, Wang J, Sierra DA, Ross EM: RGSZ1 and Ret RGS: two of several splice variants from the gene RGS20. Genomics. 2001, 78: 223-229. 10.1006/geno.2001.6659.

Wan J, Masuda T, Hackler L, Torres KM, Merbs SL, Zack DJ, Qian J: Dynamic usage of alternative splicing exons during mouse retina development. Nucleic Acids Res. 2011, 39: 7920-7930. 10.1093/nar/gkr545.

Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D’Souza C, Fouse SD, Johnson BE, Hong C, Nielsen C, Zhao Y: Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature. 2010, 466: 253-257. 10.1038/nature09165.

Solter M, Locker M, Boy S, Taelman V, Bellefroid EJ, Perron M, Pieler T: Characterization and function of the bHLH-O protein XHes2: insight into the mechanisms controlling retinal cell fate decision. Development. 2006, 133: 4097-4108. 10.1242/dev.02567.

Rapicavoli NA, Poth EM, Zhu H, Blackshaw S: The long noncoding RNA Six3OS acts in trans to regulate retinal development by modulating Six3 activity. Neural Dev. 2011, 6: 32-10.1186/1749-8104-6-32.

Bragado MJ, Perez-Marquez J, Garcia-Marin LJ: The cholecystokinin system in the rat retina: receptor expression and in vivo activation of tyrosine phosphorylation pathways. Neuropeptides. 2003, 37: 374-380. 10.1016/j.npep.2003.10.004.

Hollborn M, Tenckhoff S, Jahn K, Iandiev I, Biedermann B, Schnurrbusch UE, Limb GA, Reichenbach A, Wolf S, Wiedemann P: Changes in retinal gene expression in proliferative vitreoretinopathy: glial cell expression of HB-EGF. Mol Vis. 2005, 11: 397-413.

Liang P, Song F, Ghosh S, Morien E, Qin M, Mahmood S, Fujiwara K, Igarashi J, Nagase H, Held WA: Genome-wide survey reveals dynamic widespread tissue-specific changes in DNA methylation during development. BMC Genomics. 2011, 12: 231-10.1186/1471-2164-12-231.

Davies MN, Volta M, Pidsley R, Lunnon K, Dixit A, Lovestone S, Coarfa C, Harris RA, Milosavljevic A, Troakes C: Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood. Genome Biol. 2012, 13: R43-10.1186/gb-2012-13-6-r43.

Sambrook J, Russell DW: Molecular Cloning: A Laboratory Manual. 2001, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 3

Aryee MJ, Wu Z, Ladd-Acosta C, Herb B, Feinberg AP, Yegnasubramanian S, Irizarry RA: Accurate genome-scale percentage DNA methylation estimates from microarray data. Biostatistics. 2011, 12: 197-210. 10.1093/biostatistics/kxq055.

Pelizzola M, Koga Y, Urban AE, Krauthammer M, Weissman S, Halaban R, Molinaro AM: MEDME: an experimental and analytical methodology for the estimation of DNA methylation levels based on microarray derived MeDIP-enrichment. Genome Res. 2008, 18: 1652-1659. 10.1101/gr.080721.108.