A novel method for prenylquinone profiling in plant tissues by ultra-high pressure liquid chromatography-mass spectrometry
Tóm tắt
Prenylquinones are key compounds of the thylakoid membranes in chloroplasts. To understand the mechanisms involved in the response of plants to changing conditions such as high light intensity, the comprehensive analysis of these apolar lipids is an essential but challenging step. Conventional methods are based on liquid chromatography coupled to ultraviolet and fluorescence detection of a single or limited number of prenylquinones at a time. Here we present an original and rapid approach using ultra-high pressure liquid chromatography-atmospheric pressure chemical ionization-quadrupole time-of-flight mass spectrometry (UHPLC-APCI-QTOFMS) for the simultaneous profiling of eleven prenylquinones in plant tissues, including α-tocopherol, phylloquinone, plastochromanol-8 and plastoquinone-9. Mass spectrometry and chromatography parameters were optimized using pure standards. Sample preparation time was kept to minimum and different extraction solvents were evaluated for yield, ability to maintain the redox state of prenylquinones, and compatibility with chromatography. In addition to precise absolute quantification of 5 prenyllipids for which standards were available, relative quantification of 6 other related compounds was possible thanks to the high identification power of QTOFMS. Prenylquinone levels were measured in leaves of Arabidopsis grown under normal and high light intensities. Quantitatively, the obtained results were consistent with those reported in various previous studies, demonstrating that this new method can profile the full range of prenylquinones in a very short time. The new profiling method proves faster, more sensitive and can detect more prenylquinones than current methods based on measurements of selected compounds. It enables the extraction and analysis of twelve samples in only 1.5 h and may be applied to other plant species or cultivars.
Tài liệu tham khảo
Nowicka B, Kruk J: Occurrence, biosynthesis and function of isoprenoid quinones. BBA-Bioenergetics. 2010, 1797: 1587-1605. 10.1016/j.bbabio.2010.06.007.
Mene-Saffrane L, Jones AD, DellaPenna D: Plastochromanol-8 and tocopherols are essential lipid-soluble antioxidants during seed desiccation and quiescence in Arabidopsis. P Natl Acad Sci USA. 2010, 107: 17815-17820. 10.1073/pnas.1006971107.
Kobayashi N, DellaPenna D: Tocopherol metabolism, oxidation and recycling under high light stress in Arabidopsis. Plant J. 2008, 55: 607-618. 10.1111/j.1365-313X.2008.03539.x.
Lichtenthaler HK: Biosynthesis, accumulation and emission of carotenoids, alpha-tocopherol, plastoquinone, and isoprene in leaves under high photosynthetic irradiance. Photosynth Res. 2007, 92: 163-179. 10.1007/s11120-007-9204-y.
Krieger-Liszkay A, Trebst A: Tocopherol is the scavenger of singlet oxygen produced by the triplet states of chlorophyll in the PSII reaction centre. J Exp Bot. 2006, 57: 1677-1684. 10.1093/jxb/erl002.
Havaux M, Eymery F, Porfirova S, Rey P, Dormann P: Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana. Plant Cell. 2005, 17: 3451-3469. 10.1105/tpc.105.037036.
Kruk J, Trebst A: Plastoquinol as a singlet oxygen scavenger in photosystem II. BBA-Bioenergetics. 2008, 1777: 154-162. 10.1016/j.bbabio.2007.10.008.
Szymanska R, Kruk J: Identification of hydroxy-plastochromanol in Arabidopsis leaves. Acta Biochim Pol. 2010, 57: 105-108.
Lohmann A, Schottler MA, Brehelin C, Kessler F, Bock R, Cahoon EB, Dormann P: Deficiency in phylloquinone (vitamin K-1) methylation affects prenyl quinone distribution, photosystem I abundance, and anthocyanin accumulation in the Arabidopsis AtmenG mutant. J Biol Chem. 2006, 281: 40461-40472. 10.1074/jbc.M609412200.
Shimada H, Ohno R, Shibata M, Ikegami I, Onai K, Ohto M, Takamiya K: Inactivation and deficiency of core proteins of photosystems I and II caused by genetical phylloquinone and plastoquinone deficiency but retained lamellar structure in a T-DNA mutant of Arabidopsis. Plant J. 2005, 41: 627-637. 10.1111/j.1365-313X.2004.02326.x.
Johnson TW, Shen GZ, Zybailov B, Kolling D, Reategui R, Beauparlant S, Vassiliev IR, Bryant DA, Jones AD, Golbeck JH, Chitnis PR: Recruitment of a foreign quinone into the A(1) site of photosystem I - I. Genetic and physiological characterization of phylloquinone biosynthetic pathway mutants in Synechocystis sp PCC 6803. J Biol Chem. 2000, 275: 8523-8530. 10.1074/jbc.275.12.8523.
Zbierzak AM, Kanwischer M, Wille C, Vidi PA, Giavalisco P, Lohmann A, Briesen I, Porfirova S, Brehelin C, Kessler F, Dormann P: Intersection of the tocopherol and plastoquinol metabolic pathways at the plastoglobule. Biochem J. 2010, 425: 389-399. 10.1042/BJ20090704.
Kruk J, Karpinski S: An HPLC-based method of estimation of the total redox state of plastoquinone in chloroplasts, the size of the photochemically active plastoquinone-pool and its redox state in thylakoids of Arabidopsis. BBA-Bioenergetics. 2006, 1757: 1669-1675. 10.1016/j.bbabio.2006.08.004.
Yoshida K, Shibata M, Terashima I, Noguchi K: Simultaneous determination of in vivo plastoquinone and ubiquinone redox states by HPLC-based analysis. Plant Cell Physiol. 2010, 51: 836-841. 10.1093/pcp/pcq044.
Byrdwell WC: Atmospheric pressure chemical ionization mass spectrometry for analysis of lipids. Lipids. 2001, 36: 327-346. 10.1007/s11745-001-0725-5.
Swartz ME: UPLC (TM): An introduction and review. J Liq Chromatogr Relat Technol. 2005, 28: 1253-1263. 10.1081/JLC-200053046.
Nguyen DTT, Guillarme D, Rudaz S, Veuthey JL: Fast analysis in liquid chromatography using small particle size and high pressure. J Sep Sci. 2006, 29: 1836-1848. 10.1002/jssc.200600189.
Plumb R, Castro-Perez J, Granger J, Beattie I, Joncour K, Wright A: Ultra-performance liquid chromatography coupled to quadrupole-orthogonal time-of-flight mass spectrometry. Rapid Commun Mass Sp. 2004, 18: 2331-2337. 10.1002/rcm.1627.
Lauridsen C, Leonard SW, Griffin DA, Liebler DC, McClure TD, Traber MG: Quantitative analysis by liquid chromatography tandem mass spectrometry of deuterium-labeled and unlabeled vitamin E in biological samples. Anal Biochem. 2001, 289: 89-95. 10.1006/abio.2000.4913.
Lanina SA, Toledo P, Sampels S, Kamal-Eldin A, Jastrebova JA: Comparison of reversed-phase liquid chromatography-mass spectrometry with electrospray and atmospheric pressure chemical ionization for analysis of dietary tocopherols. J Chromatogr A. 2007, 1157: 159-170. 10.1016/j.chroma.2007.04.058.
Kurilich AC, Britz SJ, Clevidence BA, Novotny JA: Isotopic labeling and LC-APCI-MS quantification for investigating absorption of carotenoids and phylloquinone from kale (Brassica oleracea). J Agric Food Chem. 2003, 51: 4877-4883. 10.1021/jf021245t.
Suhara Y, Kamao M, Tsugawa N, Okano T: Method for the determination of vitamin K homologues in human plasma using high-performance liquid chromatography-tandem mass spectrometry. Anal Chem. 2005, 77: 757-763. 10.1021/ac0489667.
Maeda H, Song W, Sage TL, DellaPenna D: Tocopherols play a crucial role in low-temperature adaptation and phloem loading in Arabidopsis. Plant Cell. 2006, 18: 2710-2732. 10.1105/tpc.105.039404.
Szymanska R, Kruk J: Plastoquinol is the main prenyllipid synthesized during acclimation to high light conditions in Arabidopsis and is converted to plastochromanol by tocopherol cyclase. Plant Cell Physiol. 2010, 51: 537-545. 10.1093/pcp/pcq017.
Kruk J: Charge-transfer complexes of plastoquinone and alpha-tocopherol quinone in vitro. Biophys Chem. 1988, 30: 143-149. 10.1016/0301-4622(88)85011-7.
Hiltbrunner A, Bauer J, Alvarez-Huerta M, Kessler F: Protein translocon at the Arabidopsis outer chloroplast membrane. Biochem Cell Biol. 2001, 79: 629-635.