Một degron C-đầu mới được xác định trong các aldehyde decarbonylase vi khuẩn bằng phương pháp tiến hóa có định hướng

Biotechnology for Biofuels - Tập 13 - Trang 1-11 - 2020
Yilan Liu1, Jinjin Chen1, Anna N. Khusnutdinova1, Kevin Correia1, Patrick Diep1, Khorcheska A. Batyrova1, Kayla Nemr1, Robert Flick1, Peter Stogios1, Alexander F. Yakunin1,2, Radhakrishnan Mahadevan1,3
1Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
2Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, UK
3Institute of Biomedical Engineering, University of Toronto, Toronto, Canada

Tóm tắt

Các aldehyde decarbonylase (AD) chuyển đổi aldehyde acyl thành alkan, cung cấp giải pháp hứa hẹn để sản xuất alkan từ nguyên liệu tái tạo. Tuy nhiên, sự không ổn định của các AD cản trở ứng dụng tiếp theo của chúng. Do đó, nghiên cứu hiện tại nhằm điều tra cơ chế phân hủy của các AD và cải tiến chúng để có độ ổn định cao. Tại đây, chúng tôi mô tả sự phát hiện một nhãn phân hủy (degron) trong AD từ vi khuẩn xanh Prochlorococcus marinus bằng cách sử dụng hệ thống tiến hóa có định hướng dựa trên PCR dễ mắc lỗi. Phân tích bioinformatics cho thấy degron C-đầu này là phổ biến trong các AD vi khuẩn và xác định một mô hình C-đầu bảo tồn, RMSAYGLAAA, đại diện cho degron AD (ADcon). Hơn nữa, chúng tôi đã chứng minh rằng các protease phụ thuộc ATP ClpAP và Lon tham gia vào sự phân hủy của các protein gắn nhãn AD trong E. coli, từ đó hạn chế sản xuất alkan. Việc xóa bỏ hoặc chỉnh sửa mô hình degron đã tăng cường sản xuất alkan trong điều kiện in vivo. Công việc này đã tiết lộ sự hiện diện của một degron mới trong các AD vi khuẩn có trách nhiệm cho sự không ổn định của chúng. Các thí nghiệm in vivo đã chứng minh rằng việc loại bỏ hoặc chỉnh sửa degron có thể ổn định AD, từ đó tạo ra lượng alkan cao hơn.

Từ khóa

#aldehyde decarbonylases #degradation mechanism #stability engineering #renewable feedstock #directed evolution #bioinformatics

Tài liệu tham khảo

Jiang Y, Wu R, Zhou J, He A, Xu J, Xin F, Zhang W, Ma J, Jiang M, Dong W. Recent advances of biofuels and biochemicals production from sustainable resources using co-cultivation systems. Biotechnol Biofuels. 2019;12(1):155. Bai W, Geng W, Wang S, Zhang F. Biosynthesis, regulation, and engineering of microbially produced branched biofuels. Biotechnol Biofuels. 2019;12(1):84. Marella ER, Holkenbrink C, Siewers V, Borodina I. Engineering microbial fatty acid metabolism for biofuels and biochemicals. Curr Opin Biotechnol. 2018;50:39–46. Sheppard MJ, Kunjapur AM, Prather KL. Modular and selective biosynthesis of gasoline-range alkanes. Metab Eng. 2016;33:28–40. Schirmer A, Rude MA, Li X, Popova E, Del Cardayre SB. Microbial biosynthesis of alkanes. Science. 2010;329(5991):559–62. Choi YJ, Lee SY. Microbial production of short-chain alkanes. Nature. 2013;502(7472):571. Fatma Z, Hartman H, Poolman MG, Fell DA, Srivastava S, Shakeel T, Yazdani SS. Model-assisted metabolic engineering of Escherichia coli for long chain alkane and alcohol production. Metab Eng. 2018;46:1–12. Zhu Z, Zhou YJ, Kang M-K, Krivoruchko A, Buijs NA, Nielsen J. Enabling the synthesis of medium chain alkanes and 1-alkenes in yeast. Metab Eng. 2017;44:81–8. Song X, Yu H, Zhu K. Improving alkane synthesis in Escherichia coli via metabolic engineering. Appl Microbiol Biotechnol. 2016;100(2):757–67. Sinha M, Weyda I, Sørensen A, Bruno KS, Ahring BK. Alkane biosynthesis by Aspergillus carbonarius ITEM 5010 through heterologous expression of Synechococcus elongatus acyl-ACP/CoA reductase and aldehyde deformylating oxygenase genes. Amb Express. 2017;7(1):18. Abdellaoui S, Macazo FC, Cai R, De Lacey AL, Pita M, Minteer SD. Enzymatic electrosynthesis of alkanes by bioelectrocatalytic decarbonylation of fatty aldehydes. Angew Chem Int Ed. 2018;57(9):2404–8. Howard TP, Middelhaufe S, Moore K, Edner C, Kolak DM, Taylor GN, Parker DA, Lee R, Smirnoff N, Aves SJ. Synthesis of customized petroleum-replica fuel molecules by targeted modification of free fatty acid pools in Escherichia coli. Proc Natl Acad Sci. 2013;110(19):7636–41. Tseng H-C, Prather KL. Controlled biosynthesis of odd-chain fuels and chemicals via engineered modular metabolic pathways. Proc Natl Acad Sci. 2012;109(44):17925–30. Xu P, Qiao K, Ahn WS, Stephanopoulos G. Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals. Proc Natl Acad Sci. 2016;113(39):10848–53. Kudo H, Hayashi Y, Arai M. Identification of non-conserved residues essential for improving the hydrocarbon-producing activity of cyanobacterial aldehyde-deformylating oxygenase. Biotechnol Biofuels. 2019;12(1):89. Dennis M, Kolattukudy P. A cobalt-porphyrin enzyme converts a fatty aldehyde to a hydrocarbon and CO. Proc Natl Acad Sci. 1992;89(12):5306–10. Schneider-Belhaddad F, Kolattukudy P. Solubilization, partial purification, and characterization of a fatty aldehyde decarbonylase from a higher plant, Pisum sativum. Arch Biochem Biophys. 2000;377(2):341–9. Bernard A, Domergue F, Pascal S, Jetter R, Renne C, Faure J-D, Haslam RP, Napier JA, Lessire R, Joubès J. Reconstitution of plant alkane biosynthesis in yeast demonstrates that Arabidopsis ECERIFERUM1 and ECERIFERUM3 are core components of a very-long-chain alkane synthesis complex. Plant Cell. 2012;24(7):3106–18. Reed JR, Vanderwel D, Choi S, Pomonis JG, Reitz RC, Blomquist GJ. Unusual mechanism of hydrocarbon formation in the housefly: cytochrome P450 converts aldehyde to the sex pheromone component (Z)-9-tricosene and CO2. Proc Natl Acad Sci. 1994;91(21):10000–4. Ellington BR, Paul B, Das D, Vitek AK, Zimmerman PM, Marsh ENG. An Unusual Iron-Dependent Oxidative Deformylation Reaction Providing Insight into Hydrocarbon Biosynthesis in Nature. ACS Catalysis. 2016;6(5):3293–300. Zhang J, Lu X, Li J-J. Conversion of fatty aldehydes into alk (a/e) nes by in vitro reconstituted cyanobacterial aldehyde-deformylating oxygenase with the cognate electron transfer system. Biotechnol Biofuels. 2013;6(1):86. Bao L, Li J-J, Jia C, Li M, Lu X. Structure-oriented substrate specificity engineering of aldehyde-deformylating oxygenase towards aldehydes carbon chain length. Biotechnol Biofuels. 2016;9(1):185. Khara B, Menon N, Levy C, Mansell D, Das D, Marsh ENG, Leys D, Scrutton NS. Production of propane and other short-chain alkanes by structure-based engineering of ligand specificity in aldehyde-deformylating oxygenase. ChemBioChem. 2013;14(10):1204–8. Rajakovich LJ, Nørgaard H, Warui DM, Chang W, Li N, Booker SJ, Krebs C, Bollinger JM, Pandelia ME. Rapid reduction of the diferric-peroxyhemiacetal intermediate in aldehyde-deformylating oxygenase by a cyanobacterial ferredoxin: evidence for a free-radical mechanism. J Ame Chem Soc. 2015;137(36):11695–709. Shakeel T, Gupta M, Fatma Z, Kumar R, Kumar R, Singh R, Sharma M, Jade D, Gupta D, Fatma T. A consensus-guided approach yields a heat-stable alkane-producing enzyme and identifies residues promoting thermostability. J Biol Chem. 2018;RA117:000639. Eser BE, Das D, Han J, Jones PR, Marsh ENG. Oxygen-independent alkane formation by non-heme iron-dependent cyanobacterial aldehyde decarbonylase: investigation of kinetics and requirement for an external electron donor. Biochemistry. 2011;50(49):10743–50. Kang M-K, Zhou YJ, Buijs NA, Nielsen J. Functional screening of aldehyde decarbonylases for long-chain alkane production by Saccharomyces cerevisiae. Microb Cell Fact. 2017;16(1):74. Patrikainen P, Carbonell V, Thiel K, Aro EM, Kallio P. Comparison of orthologous cyanobacterial aldehyde deformylating oxygenases in the production of volatile C3-C7 alkanes in engineered E coli. Metab Eng Commun. 2017;5:9–18. Jeschek M, Reuter R, Heinisch T, Trindler C, Klehr J, Panke S, Ward TR. Directed evolution of artificial metalloenzymes for in vivo metathesis. Nature. 2016;537(7622):661. Bali AP, Genee HJ, Sommer MO. Directed evolution of membrane transport using synthetic selections. ACS synthetic Biol. 2018;7(3):789–93. Zeymer C, Hilvert D: Directed evolution of protein catalysts. Annual review of biochemistry 2018(0). Packer MS, Liu DR. Methods for the directed evolution of proteins. Nat Rev Genet. 2015;16(7):379. Sauer RT, Baker TA. AAA + proteases: ATP-fueled machines of protein destruction. Annu Rev Biochem. 2011;80:587–612. Varshavsky A. N-degron and C-degron pathways of protein degradation. Proc Natl Acad Sci. 2019;116(2):358–66. Flynn JM, Neher SB, Kim Y-I, Sauer RT, Baker TA. Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals. Mol Cell. 2003;11(3):671–83. Flynn JM: Substrate selection by the ClpXP protease: a tail of destruction. Massachusetts Institute of Technology; 2004. Frank EG, Ennis DG, Gonzalez M, Levine AS, Woodgate R. Regulation of SOS mutagenesis by proteolysis. Proc Natl Acad Sci. 1996;93(19):10291–6. Olivares AO, Kotamarthi HC, Stein BJ, Sauer RT, Baker TA. Effect of directional pulling on mechanical protein degradation by ATP-dependent proteolytic machines. Proc Natl Acad Sci. 2017;114(31):E6306–13. Gottesman S, Roche E, Zhou Y, Sauer RT. The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev. 1998;12(9):1338–47. Hansen J, Gregersen N, Bross P. Differential degradation of variant medium-chain acyl-CoA dehydrogenase by the protein quality control proteases Lon and ClpXP. Biochem Biophys Res Commun. 2005;333(4):1160–70. Mahmoud SA, Chien P: Regulated proteolysis in bacteria. Annual review of biochemistry 2018(0). Striebel F, Kress W, Weber-Ban E. Controlled destruction: AAA + ATPases in protein degradation from bacteria to eukaryotes. Curr Opin Struct Biol. 2009;19(2):209–17. Olivares AO, Baker TA, Sauer RT. Mechanistic insights into bacterial AAA + proteases and protein-remodelling machines. Nat Rev Microbiol. 2016;14(1):33. Moreno R, Rojo F: Genetic Features and Regulation of n-Alkane Metabolism in Bacteria. Aerobic Utilization of Hydrocarbons, Oils, and Lipids. 2019:521-542. Liu Y, Yang M, Chen J, Yan D, Cheng W, Wang Y, Thygesen A, Chen R, Xing J, Wang Q. PCR-based seamless genome editing with high efficiency and fidelity in Escherichia coli. PLoS ONE. 2016;11(3):e0149762. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER Suite: protein structure and function prediction. Nat Methods. 2015;12(1):7. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455–61. Pucci F, Kwasigroch JM, Rooman M. SCooP: an accurate and fast predictor of protein stability curves as a function of temperature. Bioinformatics. 2017;33(21):3415–22. Tovchigrechko A, Vakser IA. GRAMM-X public web server for protein–protein docking. Nucleic Acids Res. 2006;34:W310–4.