Một ghi chú về dư số trong việc xấp xỉ các hàm bởi một số phép toán tuyến tính dương

Positivity - 2023
Marius-Mihai Birou1
1Department of Mathematics, Technical University of Cluj-Napoca, Cluj-Napoca, Romania

Tóm tắt

Tóm tắtTrong ghi chú này, chúng tôi đưa ra các biểu diễn cho phần dư trong các công thức xấp xỉ được tạo ra bởi các phép toán tuyến tính dương, các phép toán này bảo tồn một số hàm, bao gồm cả các hàm tuyến tính. Chúng tôi chỉ ra rằng trong những trường hợp này, hạt nhân Peano từ biểu diễn tích phân của phần dư có cùng dấu trên miền định nghĩa. Những ứng dụng cho các phép toán tuyến tính dương lặp lại và các công thức tích phân cũng được trình bày.

Từ khóa


Tài liệu tham khảo

Abel, U., Ivan, M.: New representation of the remainder in the Bernstein approximation. J. Math. Anal. Appl. 381, 952–956 (2011)

Arama, L.: An estimate of the remainder in the approximation of functions by Bernstein polynomials (Romanian). Analele Univ. Bucur. Ser. Mat. Fiz. 3, 165–178 (1962)

Arama, L., Arama, O.: Une evaluation du reste dans I’approxfmation des fonctions par des polynbmes generalizes de S. N. Bernstein. Rev. Roum. Math. Pures Appl. 9, 363–374 (1964)

Arama, O.: Properties concerning the monotonicity of the sequence of polynomials of interpolation of S. N. Bernstein and their application to the study of approximation of functions. Stud. Cerc. Matem. Acad. RPR 8, 195–210 (1957)

Aral, A., Gupta, V., Agarwal, R.P.: Applications of q-Calculus in Operator Theory. Springer, Cham (2013)

Cárdenas-Morales, D., Garrancho, P., Raşa, I.: Bernstein-type operators which preserve polynomials. Comput. Math. Appl. 62(1), 158–163 (2011)

Chen, W: On the modified Bernstein-Durrmeyer operators. In: Report of the Fifth Chinese Conference on Approximation Theory, Zhen Zhou, China (1987)

Coman, G.: Numerical analysis (Romanian). Ed. Libris (1994)

Coman, G.: A generalization of the trapezon quadrature formula and of Simpson’s formula (Romanian). Stud. Univ. Babes-Bolyai Math. Ser. Math. Phys. 14(2), 53–58 (1969)

Davis, P.J.: Interpolation and Approximation. Dover, NewYork (1975)

DeVore, R.A., Lorentz, G.G.: Constructive Approximation. Springer, Berlin (1993)

Dorai, A.: A Korovkin-type theorem for sequences of positive linear operators on function spaces. Positivity 25, 2017–2027 (2021)

Ferguson, D.: Sufficient conditions for Peano’s kernel to be of one sign. SIAM J. Numer. Anal. 10, 1047–1054 (1973)

Gavrea, I., Ivan, M.: An extremal property for a class of positive linear operators. J. Approx. Theory 162, 6–9 (2010)

Gavrea, I., Ivan, M.: On the iterates of positive linear operators. J. Approx. Theory 163(9), 1076–1079 (2011)

Gavrea, I., Ivan, M.: Asymptotic behaviour of the iterates of positive linear operators. Abstr. Appl. Anal. Art. ID 670509, 11 (2011)

Goodman, T.N.T., Sharma, A.: A modified Bernstein-Schoenberg operator. In: by Sendov et al. (ed.) Proc. of the Conference on Constructive Theory of Functions, Varna 1987, Sofia: Publ. House Bulg. Acad. of Sci. pp. 166-173 (1988)

Ivan, M., Neagos, V., Silaghi, A.G.: A mean-value theorem for positive linear functionals. Monatsh. Math. 189, 675–681 (2019)

Karlin, S., Studden, W.: Tchebycheff Systems: With Applications in Analysis and Statistics. Interscience, New York (1966)

Leviatan, D.: On the remainder in the approximation of functions by Bernstein-type operators. J. Approx. Theory 2, 400–409 (1969)

Lupas, A., Moller, M.W.: Approximation properties of the $$ M_{n}$$-operators. Aequ. Math. 4, 268–270 (1970)

Mahmudov, N.I., Sabancigil, P.: On genuine q-Bernstein-Durrmeyer operators. Publ. Math. Debrecen 76(4), 221–229 (2010)

Nowak, G.: Approximation properties for generalized q-Bernstein polynomials. J. Math. Anal. Appl. 350, 50–55 (2009)

Peano, G.: Resto nelle formule di quadratura espresso con un integrale definito. Atti della Accad. Lincei Rend. 22, 562–569 (1913)

Popoviciu, T.: Notes sur les fonctions convexes d’ordre sup $$\prime $$ erieur (IX). Bull. Math. Soc. Sci. Math. Roum. 43(1/2), 85–141 (1941)

Raşa, I.: Asymptotic behaviour of iterates of positive linear operators. Jaen J. Approx. 1, 195–204 (2009)

Raşa, I.: $$C_{0}$$-semigroups and iterates of positive linear operators: asymptotic behaviour. Rend. Circ. Mat. Palermo Ser. 2 Suppl 82, 123–142 (2010)

Saskin, Y.U.: Korovkin systems in spaces of continuous functions. Izv. Akad. Nauk. SSSR Ser. Mat. 26, 495–512 (1962)

Stancu, D.D.: Evaluation of the remainder term in approximation formulas by Bernstein polynomials. Math. Comput. 17, 270–278 (1963)

Stancu, D.D.: Approximation of functions by a new class of linear polynomial operators. Rev. Roum. Math. Pures Appl. 13(8), 1173–1194 (1968)

Stancu, D.D., Stancu, F.: Quadrature rules obtained by means of positive linear operators. Rev. Anal. Num. Theory Approx. 21(1), 75–81 (1992)

Waldron, S.: Refinements of the Peano kernel theorem. Numer. Funct. Anal. Optim. 20(1–2), 147–161 (1999)

Xua, X.W., Zenga, X.M., Goldmanb, R.: Shape preserving properties of univariate Lototsky-Bernstein operators. J. Approx. Theory 224, 13–42 (2017)

Ziegler, Z.: Linear approximation and generalized convexity. J. Approx. Theory 1, 420–433 (1968)