Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Một phương pháp tối ưu hóa hình học ba chiều mới dựa trên các thành phần có thể biến đổi (MMCs)
Tóm tắt
Trong bài báo này, một phương pháp mới để giải quyết vấn đề tối ưu hóa hình học ba chiều được đề xuất. Phương pháp này được xây dựng dựa trên khung giải pháp gọi là các thành phần có thể biến đổi di động. Khía cạnh mới mẻ của phương pháp được đề xuất là một tập hợp các thành phần kết cấu được giới thiệu để mô tả hình học của một cấu trúc ba chiều, và hình học kết cấu tối ưu được tìm thấy bằng cách tối ưu hóa bố trí của các thành phần một cách rõ ràng. Phương pháp phần tử hữu hạn chuẩn với vật liệu thay thế được áp dụng để phân tích phản ứng kết cấu và phân tích độ nhạy hình dạng chỉ cần được thực hiện dọc theo biên kết cấu. So với các phương pháp hiện có, mô tả hình học kết cấu hoàn toàn độc lập với độ phân giải phần tử hữu hạn/khác biệt hữu hạn trong khung giải pháp được đề xuất, do đó số lượng biến thiết kế có thể giảm thiểu đáng kể. Một số ví dụ tham chiếu được nghiên cứu rộng rãi trong thiết kế tối ưu hóa hình học ba chiều được trình bày để chứng minh hiệu quả của phương pháp được đề xuất.
Từ khóa
#tối ưu hóa hình học ba chiều #các thành phần có thể biến đổi di động #phân tích phản ứng kết cấu #phân tích độ nhạy hình dạng #vật liệu thay thếTài liệu tham khảo
Aage N, Lazarov BS (2013) Parallel framework for topology optimization using the method of moving asymptotes. Struct Multidiscipl Optim 47(47):493–505
Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393
Allaire G, Dapogny C, Frey P (2014) Shape optimization with a level set based mesh evolution method. Comput Methods Appl Mech Eng 282:22–53
Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224
Bendsøe MP, Sigmund O (2003) Topology optimization-theory, methods and application. Springer, New York
Bendsøe MP, Lund E, Olhoff N, Sigmund O (2005) Topology optimization- broadening the areas of application. Control Cybern 34(1):7–35
Bruns TE, Tortorelli DA (2003) An element removal and reintroduction strategy for the topology optimization of structures and compliant mechanisms. Int J Numer Methods Eng 57(10):1413–1430
de Berg M, Cheong O, van Kreveld M, Overmars M (2000) Computational geometry: algorithms and applications. Springer, New York
Diaz A, Lipton R (1997) Optimal material layout for 3D elastic structures. Struct Optim 13(1):60–64
Du JB, Olhoff N (2004) Topological optimization of continuum structures with design-dependent surface loading—part II: algorithm and examples for 3D problems. Struct Multidiscipl Optim 27(3):166–177
Eschenauer HA, Olhoff N (2001) Topology optimization of continuum structures: a review. Appl Mech Rev 54(4):331–389
Fernandes P, Guedes JM, Rodrigues H (1999) Topology optimization of three- dimensional linear elastic structures with a constraint on “perimeter”. Comput Struct 73(6):583–594
Fleury C (2007) Structural optimization methods for large scale problems: status and limitations. In: ASME 2007 international design engineering technical conferences and computers and information in engineering conference, American Society of Mechanical Engineers, pp 513–522
Friedman A, Sutradhar A, Paulino GH, Miller MJ, Nguyen TH (2010) Topological optimization for designing patient-specific large craniofacial segmental bone replacements. Proc Natl Acad Sci 107(30):13222–13227
Gao XJ, Ma HT (2015) A modified model for concurrent topology optimization of structures and materials. Acta Mech Sin 31(6):890–898
Guo X, Cheng GD (2010) Recent development in structural design and optimization. Acta Mech Sin 26(6):807–823
Guo X, Zhang WS, Zhong WL (2014) Stress-related topology optimization of continuum structures involving multi-phase materials. Comput Methods Appl Mech Eng 268:632–655
Guo X, Zhang WS, Zhong WL (2014) Doing topology optimization explicitly and geometrically–a new moving morphable components based framework. J Appl Mech 81(8):081009
Guo X, Zhang WS, Zhang J, Yuan J (2016) Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons. Comput Methods Appl Mech Eng 310:711–748
Liu K, Tovar A (2014) An efficient 3D topology optimization code written in Matlab. Struct Multidiscipl Optim 50(6):1175–1196
Luo J, Luo Z, Chen SK, Tong YL, Wang MY (2008) A new level set method for systematic design of hinge-free compliant mechanisms. Comput Methods Appl Mech Eng 198(2):318–331
Montani C, Scateni R, Scopigno R (1994) A modified look-up table for implicit disambiguation of marching cubes. Visual Comput 10(6):353–355
Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscipl Optim 48(6):1031–1055
Suzuki K, Kikuchi N (1992) Generalized layout optimization of three-dimensional shell structures. Geometric aspects of industrial design, SIAM, Philadelphia, pp 62–88
Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373
Villanueva CH, Maute K (2014) Density and level set-XFEM schemes for topology optimization of 3-D structures. Comput Mech 54(1):133–150
Wang MY, Wang XM (2004) ‘Color’ level sets: a multiphase method for structural topology optimization with multiple materials. Comput Methods Appl Mech Eng 193(6):469–496
Wang MY, Wang XM, Guo DM (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1):227–246
Wang MY, Chen SK, Wang XM, Mei YL (2005) Design of multimaterial compliant mechanisms using level-set methods. J Mech Design 127(5):941–956
Wu J, Westermann R, Dick C (2014) Real-time haptic cutting of high resolution soft tissues. Stud Health Technol Inform 196:469–475
Xia Q, Shi TL (2016) Topology optimization of compliant mechanism and its support through a level set method. Comput Methods Appl Mech Eng 305:359–375
Xia Q, Shi TL (2016) Optimization of structures with thin-layer functional device on its surface through a level set based multiple-type boundary method. Comput Methods Appl Mech Eng 311:56–70
Yi GL, Sui YK (2015) Different effects of economic and structural performance indexes on model construction of structural topology optimization. Acta Mech Sin 31(5):777–788
Zegard T, Paulino GH (2016) Bridging topology optimization and additive manufacturing. Struct Multidiscipl Optim 53(1):1–18
Zhang WS, Zhang J, Guo X (2016) Lagrangian description based topology optimization—a revival of shape optimization. J Appl Mech 83(4):041010
Zhang WS, Yuan J, Zhang J, Guo X (2016) A 188 line code for a moving morphable components (MMC) based topology optimization method. Struct Multidiscipl Optim 53(6):1243–1260
Zhang WS, Yang WY, Zhou JH, Li D, Guo X (2017) Structural topology optimization through explicit boundary evolution. J Appl Mech 84(1):011011
Zhu YN, Sifakis E, Teran J, Brandt A (2010) An efficient multigrid method for the simulation of high-resolution elastic solids. ACM Trans Graph 29(2):397–408