A new skeletal model for the ankle joint complex
Tóm tắt
The talocrural and the talocalcaneal articulations collectively form the ankle joint complex of the human foot and are the focus of investigation of this work. The talocrural articulation enables plantarflexion and dorsiflexion, while the talocalcaneal articulation allows inversion and eversion of the foot. A comprehensive analysis of the literature suggests that the ankle joint complex is modeled in different manners considering approaches with varying complexity levels, which more or less accurately mimic its intrinsic anatomical features. Several studies assume that the foot articulates with the leg via the talocrural articulation only, which is modeled as a revolute joint. Other studies consider the movements allowed by both articulations and model the ankle joint complex as spherical, revolute, or classical universal joints. Most existing approaches do not consider sufficiently accurate anatomical modeling of this joint complex. Thus, this work presents a new skeletal model for the ankle joint complex of the human foot that considers the actual anatomy and movements of the talocrural and the talocalcaneal articulations. The proposed approach uses a modified universal joint, which incorporates a massless link to mimic the actual function of the talus bone. The developed formulation is compared with a model available in the literature, which uses a classical universal joint. The outcomes show that modeling the ankle joint complex as a modified universal joint allows a more realistic representation of the anatomy of the human foot. The main differences between the two joint models are observed in the mediolateral direction.
Tài liệu tham khảo
Pandy, M.G.: Computer modeling and simulation of human movement. Annu. Rev. Biomed. Eng. 3, 245–273 (2001). https://doi.org/10.1146/annurev.bioeng.3.1.245
Roupa, I., Silva, M.R., Marques, F., Gonçalves, S.B., Flores, P., Silva, M.T.: On the modeling of biomechanical systems for human movement analysis: a narrative review. Arch. Comput. Methods Eng. 29, 4915–4958 (2022). https://doi.org/10.1007/s11831-022-09757-0
Silva, M., Freitas, B., Andrade, R., Carvalho, Ó., Renjewski, D., Flores, P., Espregueira-Mendes, J.: Current perspectives on the biomechanical modelling of the human lower limb: a systematic review. Arch. Comput. Methods Eng. 28, 601–636 (2021). https://doi.org/10.1007/s11831-019-09393-1
Kleissen, R.F.M., Buurke, J.H., Harlaar, J., Zilvold, G.: Electromyography in the biomechanical analysis of human movement and its clinical application. Gait Posture 8, 143–158 (1998). https://doi.org/10.1016/S0966-6362(98)00025-3
Gonçalves, S.B., Lama, S.B.C., da Silva, M.T.: Three decades of gait index development: a comparative review of clinical and research gait indices. Clin. Biomech. 96, 105682 (2022). https://doi.org/10.1016/j.clinbiomech.2022.105682
Silva, M.R., Marques, F., Silva, M.T., Flores, P.: A comprehensive review on biomechanical modeling applied to device-assisted locomotion. Arch. Comput. Methods Eng. 30, 1897–1960 (2023). https://doi.org/10.1007/s11831-022-09856-y
Saraiva, L., Silva, M.R., Marques, F., Silva, M.T., Flores, P.: A review on foot-ground contact modeling strategies for human motion analysis. Mech. Mach. Theory 177, 105046 (2022). https://doi.org/10.1016/j.mechmachtheory.2022.105046
Cenk Güler, H., Berme, N., Simon, S.R.: A viscoelastic sphere model for the representation of plantar soft tissue during simulations. J. Biomech. 31, 847–853 (1998). https://doi.org/10.1016/S0021-9290(98)00085-2
Shourijeh, M.S., McPhee, J.: Foot–ground contact modeling within human gait simulations: from Kelvin–Voigt to hyper-volumetric models. Multibody Syst. Dyn. 35, 393–407 (2015). https://doi.org/10.1007/s11044-015-9467-6
Morales-Orcajo, E., Bayod, J., Barbosa de Las Casas, E.: Computational foot modeling: scope and applications. Arch. Comput. Methods Eng. 23, 389–416 (2016). https://doi.org/10.1007/s11831-015-9146-z
Millard, M., Mombaur, K.: A quick turn of foot: rigid foot-ground contact models for human motion prediction. Front. Neurorobot. 13 (2019). https://doi.org/10.3389/fnbot.2019.00062
Rodrigues da Silva, M., Marques, F., Tavares da Silva, M., Flores, P.: A compendium of contact force models inspired by Hunt and Crossley’s cornerstone work. Mech. Mach. Theory 167, 104501 (2022). https://doi.org/10.1016/j.mechmachtheory.2021.104501
Lund, M.E., de Zee, M., Andersen, M.S., Rasmussen, J.: On validation of multibody musculoskeletal models. Proc. Inst. Mech. Eng. H 226, 82–94 (2012). https://doi.org/10.1177/0954411911431516
Hicks, J.L., Uchida, T.K., Seth, A., Rajagopal, A., Delp, S.L.: Is my model good enough? Best practices for verification and validation of musculoskeletal models and simulations of movement. J. Biomech. Eng. 137 (2015). https://doi.org/10.1115/1.4029304
Leite, M., Soares, B., Lopes, V., Santos, S., Silva, M.T.: Design for personalized medicine in orthotics and prosthetics. Proc. CIRP 84, 457–461 (2019). https://doi.org/10.1016/j.procir.2019.04.254
Palastanga, N., Soames, R.: Anatomy and Human Movement: Structure and Function. Elsevier, Amsterdam (2012)
Standring, S.: Gray’s Anatomy: The Anatomical Basis of Clinical Practice. Elsevier Health Sciences, UK (2008)
McKeon, J., Hoch, M.: The ankle-joint complex: a kinesiologic approach to lateral ankle sprains. J. Athl. Train. 54, 589–602 (2019). https://doi.org/10.4085/1062-6050-472-17
Fukano, M., Fukubayashi, T., Banks, S.: Sex differences in three-dimensional talocrural and subtalar joint kinematics during stance phase in healthy young adults. Hum. Mov. Sci. 61, 117–125 (2018). https://doi.org/10.1016/j.humov.2018.06.003
Brockett, C., Chapman, G.: Biomechanics of the ankle. Orthop. Traumatol. 30, 232–238 (2016). https://doi.org/10.1016/j.mporth.2016.04.015
Pereira, B., Andrade, R., Espregueira-Mendes, J., Marano, R., Oliva, X., Karlsson, J.: Current concepts on subtalar instability. Orthop. J. Sports Med. 9, 232596712110213 (2021). https://doi.org/10.1177/23259671211021352
Anderson, F.C., Pandy, M.G.: A dynamic optimization solution for vertical jumping in three dimensions. Comput. Methods Biomech. Biomed. Eng. 2, 201–231 (1999). https://doi.org/10.1080/10255849908907988
Neumann, D.A.: Kinesiology of the Musculoskeletal System: Foundations for Rehabilitation. Mosby-Elsevier (2013)
Isman, R.E., Inman, V.T.: Anthropometric studies of the human foot and ankle. Bull. Prosthet. Res. (1969)
Dettwyler, M., Stacoff, A., Kramers-de Quervain, I.A., Stüssi, E.: Modelling of the ankle joint complex. Reflections with regards to ankle prostheses. Foot Ankle Surg. 10, 109–119 (2004). https://doi.org/10.1016/j.fas.2004.06.003
Marta, G., Quental, C., Folgado, J., Guerra-Pinto, F.: Multibody modelling of the foot for the biomechanical analysis of the ankle joint during running: a narrative review. J. Multi-Body Dyn. 236, 338–353 (2022). https://doi.org/10.1177/14644193221090871
de Mits, S., Segers, V., Woodburn, J., Elewaut, D., de Clercq, D., Roosen, P.: A clinically applicable six-segmented foot model. J. Orthop. Res. 30, 655–661 (2012). https://doi.org/10.1002/jor.21570
Rankine, L., Long, J., Canseco, K., Harris, G.F.: Multisegmental foot modeling: a review. Crit. Rev. Biomed. Eng. 36, 127–181 (2008). https://doi.org/10.1615/CritRevBiomedEng.v36.i2-3.30
Deschamps, K., Staes, F., Roosen, P., Nobels, F., Desloovere, K., Bruyninckx, H., Matricali, G.A.: Body of evidence supporting the clinical use of 3D multisegment foot models: a systematic review. Gait Posture 33, 338–349 (2011). https://doi.org/10.1016/j.gaitpost.2010.12.018
Silva, P., Silva, M.T., Martins, J.: Evaluation of the contact forces developed in the lower limb/orthosis interface for comfort design. Multibody Syst. Dyn. 24, 367–388 (2010). https://doi.org/10.1007/s11044-010-9219-6
Günther, M., Ruder, H.: Synthesis of two-dimensional human walking: a test of the \(\lambda \)-model. Biol. Cybern. 89, 89–106 (2003). https://doi.org/10.1007/s00422-003-0414-x
Peasgood, M., Kubica, E., McPhee, J.: Stabilization of a dynamic walking gait simulation. J. Comput. Nonlinear Dyn. 2, 65–72 (2007). https://doi.org/10.1115/1.2389230
Lopes, D., Neptune, R., Ambrósio, J., Silva, M.T.: A superellipsoid-plane model for simulating foot-ground contact during human gait. Comput. Methods Biomech. Biomed. Eng. 19, 954–963 (2016). https://doi.org/10.1080/10255842.2015.1081181
Burdett, R.: Forces predicted at the ankle during running. Med. Sci. Sports Exerc. 14, 308–316 (1982). https://doi.org/10.1249/00005768-198204000-00010
Crowninshield, R.D., Johnston, R.C., Andrews, J.G., Brand, R.A.: A biomechanical investigation of the human hip. J. Biomech. 11, 75–85 (1978). https://doi.org/10.1016/0021-9290(78)90045-3
Hardt, D.E.: Determining muscle forces in the leg during normal human walking—an application and evaluation of optimization methods. J. Biomech. Eng. 100, 72–78 (1978). https://doi.org/10.1115/1.3426195
Mouzo, F., Lugris, U., Pamies-Vila, R., Cuadrado, J.: Skeletal-level control-based forward dynamic analysis of acquired healthy and assisted gait motion. Multibody Syst. Dyn. 44, 1–29 (2018). https://doi.org/10.1007/s11044-018-09634-4
Kepple, T., Siegel, K., Stanhope, S.: Relative contributions of the lower extremity joint moments to forward progression and support during gait. Gait Posture 6, 1–8 (1997). https://doi.org/10.1016/S0966-6362(96)01094-6
Dul, J., Johnson, G.E.: A kinematic model of the human ankle. J. Biomed. Eng. 7, 137–143 (1985). https://doi.org/10.1016/0141-5425(85)90043-3
Delp, S.L., Loan, J.P., Hoy, M.G., Zajac, F.E., Topp, E.L., Rosen, J.M.: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans. Biomed. Eng. 37, 757–767 (1990). https://doi.org/10.1109/10.102791
Scott, S.H., Winter, D.A.: Biomechanical model of the human foot: kinematics and kinetics during the stance phase of walking. J. Biomech. 26, 1091–1104 (1993). https://doi.org/10.1016/S0021-9290(05)80008-9
Razu, S.S., Guess, T.M.: Electromyography-driven forward dynamics simulation to estimate in vivo joint contact forces during normal, smooth, and bouncy gaits. J. Biomech. Eng. 140, 0710121 (2018). https://doi.org/10.1115/1.4038507
Reinbolt, J.A., Schutte, J.F., Fregly, B.J., Koh, B.I., Haftka, R.T., George, A.D., Mitchell, K.H.: Determination of patient-specific multi-joint kinematic models through two-level optimization. J. Biomech. 38, 621–626 (2005). https://doi.org/10.1016/j.jbiomech.2004.03.031
Maniar, N., Schache, A., Pizzolato, C., Opar, D.: Muscle function during single leg landing. Sci. Rep. 12, 11486 (2022). https://doi.org/10.1038/s41598-022-15024-w
van den Bogert, A.J., Smith, G.D., Nigg, B.M.: In vivo determination of the anatomical axes of the ankle joint complex: an optimization approach. J. Biomech. 27, 1477–1488 (1994). https://doi.org/10.1016/0021-9290(94)90197-X
Guess, T., Stylianou, A., Kia, M.: Concurrent prediction of muscle and tibiofemoral contact forces during treadmill gait. J. Biomech. Eng. 136 (2014). https://doi.org/10.1115/1.4026359
Lin, Y.-C., Pandy, M.: Three-dimensional data-tracking dynamic optimization simulations of human locomotion generated by direct collocation. J. Biomech. 59, 1–8 (2017). https://doi.org/10.1016/j.jbiomech.2017.04.038
Franci, R., Parenti-Castelli, V., Belvedere, C., Leardini, A.: A new one-DOF fully parallel mechanism for modelling passive motion at the human tibiotalar joint. J. Biomech. 42, 1403–1408 (2009). https://doi.org/10.1016/j.jbiomech.2009.04.024
Di Gregorio, R., Parenti-Castelli, V., O’Connor, J.J., Leardini, A.: Mathematical models of passive motion at the human ankle joint by equivalent spatial parallel mechanisms. Med. Biol. Eng. Comput. 45, 305–313 (2007). https://doi.org/10.1007/s11517-007-0160-7
Leardini, A., Belvedere, C., Nardini, F., Sancisi, N., Conconi, M., Parenti-Castelli, V.: Kinematic models of lower limb joints for musculo-skeletal modelling and optimization in gait analysis. J. Biomech. 62, 77–86 (2017). https://doi.org/10.1016/j.jbiomech.2017.04.029
Rajagopal, A., Dembia, C.L., DeMers, M.S., Delp, D.D., Hicks, J.L., Delp, S.L.: Full-body musculoskeletal model for muscle-driven simulation of human gait. IEEE Trans. Biomed. Eng. 63, 2068–2079 (2016). https://doi.org/10.1109/TBME.2016.2586891
Malaquias, T.M., Silveira, C., Aerts, W., De Groote, F., Dereymaeker, G., Vander Sloten, J., Jonkers, I.: Extended foot-ankle musculoskeletal models for application in movement analysis. Comput. Methods Biomech. Biomed. Eng. 20, 153–159 (2017). https://doi.org/10.1080/10255842.2016.1206533
Oosterwaal, M., Carbes, S., Telfer, S., Woodburn, J., Tørholm, S., Al-Munajjed, A.A., van Rhijn, L., Meijer, K.: The Glasgow-Maastricht foot model, evaluation of a 26 segment kinematic model of the foot. J. Foot Ankle Res. 9, 19 (2016). https://doi.org/10.1186/s13047-016-0152-7
Oosterwaal, M., Telfer, S., Tørholm, S., Carbes, S., van Rhijn, L.W., Macduff, R., Meijer, K., Woodburn, J.: Generation of subject-specific, dynamic, multisegment ankle and foot models to improve orthotic design: a feasibility study. BMC Musculoskelet. Disord. 12, 256 (2011). https://doi.org/10.1186/1471-2474-12-256
Malaquias, T.M., Gonçalves, S.B., Silva, M.T.: A three-dimensional multibody model of the human ankle-foot complex. In: Flores, P., Viadero, F. (eds.) New Trends in Mechanism and Machine Science. Mechanisms and Machine Science, vol. 24, pp. 445–453. Springer, Cham (2015)
Malaquias, T.M., Gonçalves, S.B., Silva, M.T.: Development of a Three-Dimensional Multibody Model of the Human Leg and Foot for Application to Movement Analysis (2013)
Flores, P.: Concepts and Formulations for Spatial Multibody Dynamics. Springer, Berlin (2015)
Marques, F., Roupa, I., Silva, M.T., Flores, P., Lankarani, H.M.: Examination and comparison of different methods to model closed loop kinematic chains using Lagrangian formulation with cut joint, clearance joint constraint and elastic joint approaches. Mech. Mach. Theory 160, 104294 (2021). https://doi.org/10.1016/j.mechmachtheory.2021.104294
Nikravesh, P.: Computer-Aided Analysis of Mechanical Systems. Prentice-Hall, New York (1988)
Flores, P., Lankarani, H.M.: Contact Force Models for Multibody Dynamics. Springer, Switzerland (2016)
Silva, M.R., Marques, F., Silva, M.T., Flores, P.: Modelling spherical joints in multibody systems. In: Pucheta, M., Cardona, A., Preidikman, S., Hecker, R. (eds.) Multibody Mechatronic Systems. MuSMe 2021. Mechanisms and Machine Science, vol. 110, pp. 85–93. Springer, Cham (2022)
Silva, M.R., Marques, F., Silva, M.T., Flores, P.: A comparison of spherical joint models in the dynamic analysis of rigid mechanical systems: ideal, dry, hydrodynamic and bushing approaches. Multibody Syst. Dyn. 56, 221–266 (2022). https://doi.org/10.1007/s11044-022-09843-y
Roupa, I., Gonçalves, S.B., Silva, M.T.: Kinematics and dynamics of planar multibody systems with fully Cartesian coordinates and a generic rigid body. Mech. Mach. Theory 180, 105134 (2023). https://doi.org/10.1016/j.mechmachtheory.2022.105134
Augustynek, K., Urbaś, A.: Numerical investigation on the constraint violation suppression methods efficiency and accuracy for dynamics of mechanisms with flexible links and friction in joints. Mech. Mach. Theory 181, 105211 (2023). https://doi.org/10.1016/j.mechmachtheory.2022.105211
Budynas, R.G., Nisbett, J.K.: Mechanical Engineering - Shigley’s Mechanical Engineering Design. McGraw-Hill, New York (2006)
Mott, R.L., Vavrek, E.M., Wang, J.: Machine Elements in Mechanical Design. Pearson Education, Upper Saddle River (2018)
Sancisi, N., Parenti-Castelli, V.: Simultaneous identification of the human tibio-talar and talo-calcaneal joint rotation axes by the burmester theory. In: Volume 4: 18th Design for Manufacturing and the Life Cycle Conference; 2013 ASME/IEEE International Conference on Mechatronic and Embedded Systems and Applications. American Society of Mechanical Engineers (2013)
Silva, M.P.T., Ambrósio, J.A.C., Pereira, M.S.: Biomechanical model with joint resistance for impact simulation. Multibody Syst. Dyn. 1, 65–84 (1997). https://doi.org/10.1023/A:1009700405340
Reese, N., Bandy, W.: Joint Range of Motion and Muscle Length Testing. Saunders, Philadelphia (2016)
Fraser, B., Lott, B.: Anatomy & Physiology. Sci. e-Resour. (2019)
Higgins, M.: Therapeutic Exercise: From Theory to Practice. Davis, Philadelphia (2011)
Cifu, D.X.: Braddom’s Physical Medicine and Rehabilitation. Elsevier Health Sciences (2015)
Roberts, J.M., Wilson, K.: Effect of stretching duration on active and passive range of motion in the lower extremity. Br. J. Sports Med. 33, 259–263 (1999). https://doi.org/10.1136/bjsm.33.4.259
Sands, W.A., McNeal, J.R., Stone, M.H., Kimmel, W.L., Gregory Haff, G., Jemni, M.: The effect of vibration on active and passive range of motion in elite female synchronized swimmers. Eur. J. Sport Sci. 8, 217–223 (2008). https://doi.org/10.1080/17461390802116682
Audu, M.L., Davy, D.T.: The influence of muscle model complexity in musculoskeletal motion modeling. J. Biomech. Eng. 107, 147–157 (1985). https://doi.org/10.1115/1.3138535
Davy, D.T., Audu, M.L.: A dynamic optimization technique for predicting muscle forces in the swing phase of gait. J. Biomech. 20, 187–201 (1987). https://doi.org/10.1016/0021-9290(87)90310-1
Yamaguchi, G.T.: Dynamic Modeling of Musculoskeletal Motion: A Vectorized Approach for Biomechanical Analysis in Three Dimensions. Springer, Boston (2006)
Kapandji, I.: The Physiology of Joints. Volume 1: The Upper Extremity. Churchill, Livingstone (1974)
Nasr, A., Bell, S., McPhee, J.: Optimal design of active-passive shoulder exoskeletons: a computational modeling of human-robot interaction. Multibody Syst. Dyn. 57, 73–106 (2023). https://doi.org/10.1007/s11044-022-09855-8
Siegler, S., Toy, J., Seale, D., Pedowitz, D.: New observations on the morphology of the talar dome and its relationship to ankle kinematics. Clin. Biomech. 29, 1–6 (2014). https://doi.org/10.1016/j.clinbiomech.2013.10.009
Flores, P., Seabra, E.: Influence of the Baumgarte parameters on the dynamic response of multibody mechanical systems. Dyn. Contin. Discrete Impuls. Syst., 415–432 (2009)
Flores, P., Machado, M., Seabra, E., Tavares da Silva, M.: A parametric study on the Baumgarte stabilization method for forward dynamics of constrained multibody systems. J. Comput. Nonlinear Dyn. 6 (2011). https://doi.org/10.1115/1.4002338
Panero, J., Zelnik, M.: Human Dimension and Interior Space - a Source Book of Design Reference Standards. Watson-Guptill, New York (1979)
Silva, M.P.T., Ambrósio, J.A.C., Pereira, M.S.: A multibody approach to the vehicle and occupant integrated simulation. Int. J. Crashworthiness 2, 73–90 (1996). https://doi.org/10.1533/cras.1997.0036
Rouse, E.J., Hargrove, L.J., Perreault, E.J., Kuiken, T.A.: Estimation of human ankle impedance during the stance phase of walking. IEEE Trans. Neural Syst. Rehabil. Eng. 22, 870–878 (2014). https://doi.org/10.1109/TNSRE.2014.2307256
Shorter, A.L., Rouse, E.J.: Mechanical impedance of the ankle during the terminal stance phase of walking. IEEE Trans. Neural Syst. Rehabil. Eng. 26, 135–143 (2018). https://doi.org/10.1109/TNSRE.2017.2758325
Wu, G., Siegler, S., Allard, P., Kirtley, C., Leardini, A., Rosenbaum, D., Whittle, M., D’Lima, D.D., Cristofolini, L., Witte, H., Schmid, O., Stokes, I.: ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine. J. Biomech. 35, 543–548 (2002). https://doi.org/10.1016/S0021-9290(01)00222-6