Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Một bộ mồi mới cho Clade I nosZ phục hồi gen từ một khoảng rộng hơn của taxa
Tóm tắt
Quá trình khử nitrat là một quá trình quan trọng trong chu trình nitơ toàn cầu. Gen mã hóa NosZ, gen chuyển đổi khí nitrous oxide (N2O) thành N2, đã được sử dụng rộng rãi như một dấu sinh học để nghiên cứu cộng đồng khử nitrat. Tuy nhiên, các mồi PCR thông thường chỉ nhắm tới một phạm vi hạn chế trong Clade I nosZ có đa dạng di truyền, và các sản phẩm khuếch đại quá dài để giải trình tự trên các nền tảng NGS hiện tại. Để giải quyết những vấn đề này, chúng tôi đã phát triển một bộ mồi PCR mới khuếch đại một vùng 355-bp của Clade I nosZ và thu được sự bao phủ thuế phân loại rộng hơn so với các mồi thông thường trong các thử nghiệm in silico. Khi so sánh với bộ mồi nosZF_nosZR_Rich_2003 được sử dụng rộng rãi, sử dụng cùng mẫu đất và cùng độ sâu giải trình tự, bộ mồi mới đã thu hồi gen từ bốn lần nhiều loài độc nhất hơn, với các chỉ số đa dạng tổng quát cao hơn một cách nhất quán. Bộ mồi mới hoạt động tốt với các nền tảng giải trình tự khác nhau (Ion Torrent và Illumina), và trong một loạt các mẫu đất từ Bắc cực đến nhiệt đới, từ sa mạc đến nông nghiệp, và từ bề mặt đến tầng đất thấp với khối lượng sinh khối rất thấp, với sự khác biệt đáng kể về đa dạng và thành phần của cộng đồng khử nitrat. Bộ mồi mới này cho Clade I cùng với các mồi gần đây được báo cáo cho Clade II bởi Chee-Sanford et al. (J Microbiol Meth 172:105908, 2020) cung cấp một đánh giá toàn diện hơn về các chủ thể gen khử nitrat, các mẫu sinh thái của chúng và mức độ độc đáo trong các trình tự gen được thu hồi.
Từ khóa
#khử nitrat #gen NosZ #Clade I #đa dạng di truyềnTài liệu tham khảo
Castellano-Hinojosa A, González-López J, Bedmar EJ (2018) Distinct effect of nitrogen fertilisation and soil depth on nitrous oxide emissions and nitrifiers and denitrifiers abundance. Biol Fertil Soils 54:829–840
Chee-Sanford JC, Connor L, Krichels A, Yang WH, Sanford RA (2020) Hierarchical detection of diverse Clade II (atypical) nosZ genes using new primer sets for classical- and multiplex PCR array applications. J Microbiol Methods 172:105908
Chen Z, Liu J, Wu M, Xie X, Wu J, Wei W (2012) Differentiated response of denitrifying communities to fertilization regime in paddy soil. Microb Ecol 63:446–459
Cheneby D, Hartmann A, Hénault C, Topp E, Germon J (1998) Diversity of denitrifying microflora and ability to reduce N2O in two soils. Biol Fertil Soils 28:19–26
Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200
Fish JA, Chai B, Wang Q, Sun Y, Brown CT, Tiedje JM, Cole JR (2013) FunGene: the functional gene pipeline and repository. Front Microbiol 4:291
Graf DRH, Zhao M, Jones CM, Hallin S (2016) Soil type overrides plant effect on genetic and enzymatic N2O production potential in arable soils. Soil Biol Biochem 100:125–128
Hallin S, Philippot L, Löffler FE, Sanford RA, Jones CM (2018) Genomics and ecology of novel N2O-reducing microorganisms. Trends Microbiol 26:43–55
Harter J, Weigold P, El-Hadidi M, Huson DH, Kappler A, Behrens S (2016) Soil biochar amendment shapes the composition of N2O-reducing microbial communities. Sci Total Environ 562:379–390
Henry S, Bru D, Stres B, Hallet S, Philippot L (2006) Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Appl Environ Microbiol 72:5181–5189
IPCC (2019) Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. www.ipcc.ch/srccl/. Accessed 9 Dec 2020
Ji Y, Conrad R, Xu H (2020) Responses of archaeal, bacterial, and functional microbial communities to growth season and nitrogen fertilization in rice fields. Biol Fertil Soils 56:81–95
Jones CM, Graf DR, Bru D, Philippot L, Hallin S (2013) The unaccounted yet abundant nitrous oxide-reducing microbial community: a potential nitrous oxide sink. ISME J 7:417–426
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948
Letunic I, Bork P (2016) Interactive Tree of Life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 44:W242–W245
Ma Y, Zilles JL, Kent AD (2019) An evaluation of primers for detecting denitrifiers via their functional genes. Environ Microbiol 21:1196–1210
Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2015) vegan: community ecology package.
Orellana LH, Rodriguez-R LM, Higgins S, Chee-Sanford JC, Sanford RA, Ritalahti KM, Loffler FE, Konstantinidis KT (2014) Detecting nitrous oxide reductase (nosZ) genes in soil metagenomes: method development and implications for the nitrogen cycle. mBio 5:e01193-01114
Penton CR, St Louis D, Pham A, Cole JR, Wu L, Luo Y, Schuur EA, Zhou J, Tiedje JM (2015) Denitrifying and diazotrophic community responses to artificial warming in permafrost and tallgrass prairie soils. Front Microbiol 6:746
Philippot L, Spor A, Henault C, Bru D, Bizouard F, Jones CM, Sarr A, Maron PA (2013) Loss in microbial diversity affects nitrogen cycling in soil. ISME J 7:1609–1619
Ravishankara AR, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326:123–125
Rich JJ, Heichen RS, Bottomley PJ, Cromack K Jr, Myrold DD (2003) Community composition and functioning of denitrifying bacteria from adjacent meadow and forest soils. Appl Environ Microbiol 69:5974–5982
Rosch C, Mergel A, Bothe H (2002) Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil. Appl Environ Microbiol 68:3818–3829
Samad MS, Biswas A, Bakken LR, Clough TJ, de Klein CAM, Richards KG, Lanigan GJ, Morales SE (2016) Phylogenetic and functional potential links pH and N2O emissions in pasture soils. Sci Rep-Uk 6:35990–35990
Sanford RA, Wagner DD, Wu Q, Chee-Sanford JC, Thomas SH, Cruz-Garcia C, Rodriguez G, Massol-Deya A, Krishnani KK, Ritalahti KM, Nissen S, Konstantinidis KT, Loffler FE (2012) Unexpected nondenitrifier nitrous oxide reductase gene diversity and abundance in soils. Proc Natl Acad Sci 109:19709–19714
Scala DJ, Kerkhof LJ (1998) Nitrous oxide reductase (nosZ) gene-specific PCR primers for detection of denitrifiers and three nosZ genes from marine sediments. FEMS Microbiol Lett 162:61–68
Schöler A, Jacquiod S, Vestergaard G, Schulz S, Schloter M (2017) Analysis of soil microbial communities based on amplicon sequencing of marker genes. Biol Fertil Soils 53:485–489
Shen W, Xue H, Gao N, Shiratori Y, Kamiya T, Fujiwara T, Isobe K, Senoo K (2020) Effects of copper on nitrous oxide (N2O) reduction in denitrifiers and N2O emissions from agricultural soils. Biol Fertil Soils 56:39–51
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729
Thomson AJ, Giannopoulos G, Pretty J, Baggs EM, Richardson DJ (2012) Biological sources and sinks of nitrous oxide and strategies to mitigate emissions. Philos Trans R Soc Lond Ser B Biol Sci 367:1157–1168
Throback IN, Enwall K, Jarvis A, Hallin S (2004) Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiol Ecol 49:401–417
Tsiknia M, Paranychianakis NV, Varouchakis EA, Nikolaidis NP (2015) Environmental drivers of the distribution of nitrogen functional genes at a watershed scale. FEMS Microbiol Ecol 91:fiv052
Wang Q, Quensen JF, Fish JA, Lee TK, Sun Y, Tiedje JM, Cole JR (2013) Ecological patterns of nifH genes in four terrestrial climatic zones explored with targeted metagenomics using FrameBot, a new informatics tool. mBio 4:e00592–e00513
Wang Q, Fish JA, Gilman M, Sun Y, Brown CT, Tiedje JM, Cole JR (2015) Xander: employing a novel method for efficient gene-targeted metagenomic assembly. Microbiome 3:32
Wang H, Han J, Deng N, An S (2019) Effects of the natural restoration time of abandoned farmland in a semiarid region on the soil denitrification rates and abundance and community structure of denitrifying bacteria. Appl Microbiol Biotechnol 103:1939–1951
Whitaker D, Christman M (2014) clustsig: significant cluster analysis. R package version 1.1
Wickham H, Chang W, RStudio (2017) ggplot2: create elegant data visualisations using the grammar of graphics. Springer, New York
Yoon S, Nissen S, Park D, Sanford RA, Loffler FE (2016) Nitrous oxide reduction kinetics distinguish bacteria harboring Clade I NosZ from those harboring Clade II NosZ. Appl Environ Microbiol 82:3793–3800
Zhang B, Penton CR, Xue C, Wang Q, Zheng T, Tiedje JM (2015) Evaluation of the Ion Torrent Personal Genome Machine for gene-targeted studies using amplicons of the nitrogenase gene nifH. Appl Environ Microbiol 81:4536–4545
Zhang B, Penton CR, Xue C, Quensen JF, Roley SS, Guo J, Garoutte A, Zheng T, Tiedje JM (2017) Soil depth and crop determinants of bacterial communities under ten biofuel cropping systems. Soil Biol Biochem 112:140–152
Zhao S, Wang Q, Zhou J, Yuan D, Zhu G (2018) Linking abundance and community of microbial NO-producers and NO-reducers with enzymatic NO production potential in a riparian zone. Sci Total Environ 642:1090–1099
Zumft WG, Kroneck PM (2007) Respiratory transformation of nitrous oxide (N2O) to dinitrogen by bacteria and Archaea. Adv Microb Physiol 52:107–227
