A new method for multi-point pollution source identification
Tài liệu tham khảo
Allen, 2007, Improving pollutant source characterization by better estimating wind direction with a genetic algorithm, Atmos. Environ., 41, 2283, 10.1016/j.atmosenv.2006.11.007
Brioude, 2013, The Lagrangian particle dispersion model FLEXPART-WRF version 3.1, Geosci. Model Dev., 6, 1889, 10.5194/gmd-6-1889-2013
Dee, 2011, The ERA-interim reanalysis: configuration and performance of the data assimilation system, Q. J. R. Meteorol. Soc., 137, 553, 10.1002/qj.828
Dudhia, 1989, Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model, J. Atmos. Sci., 46, 3077, 10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2
Evangeliou, 2017, Inverse modeling of the Chernobyl source term using atmospheric concentration and deposition measurements, Atmos. Chem. Phys., 17, 8805, 10.5194/acp-17-8805-2017
Hong, 2004, A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation, Mon. Wea. Rev., 132, 103, 10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2
Hong, 2006, A new vertical diffusion package with an explicit treatment of entrainment processes, Mon. Wea. Rev., 134, 2318, 10.1175/MWR3199.1
Hutchinson, 2017, A review of source term estimation methods for atmospheric dispersion events using static or mobile sensors, Inf. Fusion, 36, 130, 10.1016/j.inffus.2016.11.010
Kain, 1993, Convective parameterization for mesoscale models: the Kain-Fritsch scheme, 165
Matthes, 2005, Source localization by spatially distributed electronic noses for advection and diffusion, IEEE Trans. Signal Process., 53, 1711, 10.1109/TSP.2005.845423
Mlawer, 1997, Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave, J. Geophys. Res. Atmos., 102, 16663, 10.1029/97JD00237
Pudykiewicz, 1998, Application of adjoint tracer transport equations for evaluating source parameters, Atmos. Environ., 32, 3039, 10.1016/S1352-2310(97)00480-9
Qiu, 2018, Atmospheric dispersion prediction and source estimation of hazardous gas using artificial neural network, particle swarm optimization and expectation maximization, Atmos. Environ., 178, 158, 10.1016/j.atmosenv.2018.01.056
Singh, 2015, Inverse modeling methods for identifying unknown releases in emergency scenarios: an overview, Int. J. Environ. Pollut., 57, 68, 10.1504/IJEP.2015.072121
Singh, 2015, Reconstructing height of an unknown point release using least-squares data assimilation, Q. J. R. Meteorol. Soc., 141, 1376, 10.1002/qj.2446
Stohl, 2011, Determination of time- and height-resolved volcanic ash emissions and their use for quantitative ash dispersion modeling: the 2010 Eyjafjallajökull eruption, Atmos. Chem. Phys., 11, 4333, 10.5194/acp-11-4333-2011
Stohl, 2012, Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition, Atmos. Chem. Phys., 12, 2313, 10.5194/acp-12-2313-2012
Tichý, 2017, Bayesian inverse modeling and source location of an unintended 131I release in Europe in the fall of 2011, Atmos. Chem. Phys., 17, 12677, 10.5194/acp-17-12677-2017
Yee, E., 2007. Bayesian probabilistic approach for inverse source determination from limited and noisy chemical or biological sensor concentration measurements. Proc. SPIE 6554, Chemical and Biological Sensing VIII, 65540W (27 April 2007), 1–12. https://doi.org/10.1117/12.721630.