A new iteration scheme for a hybrid pair of generalized nonexpansive mappings

Izhar Uddin, Afrah A. N. Abdou1, Mohammad Imdad2
1Department of Mathematics, King Abdulaziz University, Jeddah, Saudi Arabia
2Department of Mathematics, Aligarh Muslim University, Aligarh, India

Tóm tắt

Abstract In this paper, we construct an iteration scheme involving a hybrid pair of nonexpansive mappings and utilize the same to prove some convergence theorems. In the process, we remove a restricted condition (called end-point condition) in Sokhuma and Kaewkhao’s results (Fixed Point Theory Appl. 2010:618767, 2010). Thus, our results generalized and improved several results contained in Sokhuma and Kaewkhao (Fixed Point Theory Appl. 2010:618767, 2010), Akkasriworn et al. (Int. J. Math. Anal. 6(19):923-932, 2012), Uddin et al. (Bull. Malays. Math. Soc., accepted) and Sokhuma (J. Math. Anal. 4(2):23-31, 2013). MSC:47H10, 54H25.

Từ khóa


Tài liệu tham khảo

Suzuki T: Fixed point theorems and convergence theorems for some generalized nonexpansive mappings. J. Math. Anal. Appl. 2008, 340: 1088–1095. 10.1016/j.jmaa.2007.09.023

Picard E: Mémoire sur la théorie des équations aux dérivées partielles et la méthode des approximations successives. J. Math. Pures Appl. 1890, 6: 145–210.

Mann WR: Mean value methods in iterations. Proc. Am. Math. Soc. 1953, 4: 506–510. 10.1090/S0002-9939-1953-0054846-3

Ishikawa S: Fixed points by a new iteration method. Proc. Am. Math. Soc. 1974, 44: 147–150. 10.1090/S0002-9939-1974-0336469-5

Nadler SB Jr.: Multivalued contraction mappings. Pac. J. Math. 1969, 30: 475–488. 10.2140/pjm.1969.30.475

Markin JT: Continuous dependence of fixed point sets. Proc. Am. Math. Soc. 1973, 38: 545–547. 10.1090/S0002-9939-1973-0313897-4

Gorniewicz L: Topological Fixed Point Theory of Multivalued Mappings. Kluwer Academic, Dordrecht; 1999.

Lim TC: A fixed point theorem for multivalued nonexpansive mappings in a uniformly convex Banach spaces. Bull. Am. Math. Soc. 1974, 80: 1123–1126. 10.1090/S0002-9904-1974-13640-2

Sastry KPR, Babu GVR: Convergence of Ishikawa iterates for a multi-valued mapping with a fixed point. Czechoslov. Math. J. 2005, 55: 817–826. 10.1007/s10587-005-0068-z

Panyanak B: Mann and Ishikawa iterative processes for multivalued mappings in Banach spaces. Comput. Math. Appl. 2007, 54: 872–877. 10.1016/j.camwa.2007.03.012

Song Y, Wang H: Convergence of iterative algorithms for multivalued mappings in Banach spaces. Nonlinear Anal. 2009, 70: 1547–1556. 10.1016/j.na.2008.02.034

Shahzad N, Zegeye H: On Mann and Ishikawa iteration schemes for multi-valued maps in Banach spaces. Nonlinear Anal. 2009, 71: 838–844. 10.1016/j.na.2008.10.112

Berinde V Lecture Notes in Mathematics 1912. In Iterative Approximation of Fixed Points. Springer, Berlin; 2007.

Sokhuma K, Kaewkhao A: Ishikawa iterative process for a pair of single-valued and multivalued nonexpansive mappings in Banach spaces. Fixed Point Theory Appl. 2010., 2010: Article ID 618767

Akkasriworn N, Sokhuma K, Chuikamwong K: Ishikawa iterative process for a pair of Suzuki generalized nonexpansive single valued and multivalued mappings in Banach spaces. Int. J. Math. Anal. 2012, 6(19):923–932.

Sokhuma K: Δ-Convergence theorems for a pair of single-valued and multivalued nonexpansive mappings in CAT(0) spaces. J. Math. Anal. 2013, 4(2):23–31.

Uddin, I, Imdad, M, Ali, J: Convergence theorems for a hybrid pair of generalized nonexpansive mappings in Banach spaces. Bull. Malays. Math. Soc. (accepted)

Sokhuma K: Convergence theorems for a pair of asymptotically and multi-valued nonexpansive mapping in Banach spaces. Int. J. Math. Anal. 2013, 7(19):927–936.

Kaewcharoen A, Panyanak B: Fixed point theorems for some generalized multivalued nonexpansive mappings. Nonlinear Anal. 2011, 74: 5578–5584. 10.1016/j.na.2011.05.042

García-Falset J, Llorens-Fuster E, Suzuki T: Fixed point theory for a class of generalized nonexpansive mappings. J. Math. Anal. Appl. 2011, 375: 185–195. 10.1016/j.jmaa.2010.08.069

Schu J: Weak and strong convergence to fixed points of asymptotically nonexpansive mappings. Bull. Aust. Math. Soc. 1991, 43: 153–159. 10.1017/S0004972700028884

Song Y, Cho YJ: Some notes on Ishikawa iteration for multivalued mappings. Bull. Korean Math. Soc. 2011, 48(3):575–584. 10.4134/BKMS.2011.48.3.575

Khan SH, Fukhar-ud-din H: Weak and strong convergence of a scheme with errors for two nonexpansive mappings. Nonlinear Anal. 2005, 8: 1295–1301.

Fukhar-ud-din H, Khan SH: Convergence of iterates with errors of asymptotically quasi-nonexpansive mappings and applications. J. Math. Anal. Appl. 2007, 328: 821–829. 10.1016/j.jmaa.2006.05.068

Senter HF, Dotson WG: Approximating fixed points of nonexpansive mappings. Proc. Am. Math. Soc. 1974, 44(2):375–380. 10.1090/S0002-9939-1974-0346608-8