A new heterogeneous asynchronous explicit–implicit time integrator for nonsmooth dynamics

Computational Mechanics - Tập 60 - Trang 1-21 - 2017
Fatima-Ezzahra Fekak1, Michael Brun1, Anthony Gravouil1,2, Bruno Depale3
1Univ Lyon, INSA-Lyon, Villeurbanne, France
2Institut Universitaire de France, Paris, France
3Technical Center of Mechanical Industry, Senlis, France

Tóm tắt

In computational structural dynamics, particularly in the presence of nonsmooth behavior, the choice of the time-step and the time integrator has a critical impact on the feasibility of the simulation. Furthermore, in some cases, as in the case of a bridge crane under seismic loading, multiple time-scales coexist in the same problem. In that case, the use of multi-time scale methods is suitable. Here, we propose a new explicit–implicit heterogeneous asynchronous time integrator (HATI) for nonsmooth transient dynamics with frictionless unilateral contacts and impacts. Furthermore, we present a new explicit time integrator for contact/impact problems where the contact constraints are enforced using a Lagrange multiplier method. In other words, the aim of this paper consists in using an explicit time integrator with a fine time scale in the contact area for reproducing high frequency phenomena, while an implicit time integrator is adopted in the other parts in order to reproduce much low frequency phenomena and to optimize the CPU time. In a first step, the explicit time integrator is tested on a one-dimensional example and compared to Moreau-Jean’s event-capturing schemes. The explicit algorithm is found to be very accurate and the scheme has generally a higher order of convergence than Moreau-Jean’s schemes and provides also an excellent energy behavior. Then, the two time scales explicit–implicit HATI is applied to the numerical example of a bridge crane under seismic loading. The results are validated in comparison to a fine scale full explicit computation. The energy dissipated in the implicit–explicit interface is well controlled and the computational time is lower than a full-explicit simulation.

Tài liệu tham khảo

Abadie M (2000) Dynamic simulation of rigid bodies: modelling of frictional contact. In: Impacts in mechanical systems, pp 61–144. Springer Acary V (2012) Higher order event capturing time-stepping schemes for nonsmooth multibody systems with unilateral constraints and impacts. Appl Numer Math 62(10):1259–1275 Acary V (2013) Projected event-capturing time-stepping schemes for nonsmooth mechanical systems with unilateral contact and Coulomb’s friction. Comput Methods Appl Mech Eng 256:224–250 Acary V (2016) Energy conservation and dissipation properties of time-integration methods for nonsmooth elastodynamics with contact. ZAMM J Appl Math Mech 96:585–603 Acary V, Brogliato B (2008) Numerical methods for nonsmooth dynamical systems: applications in mechanics and electronics, vol 35. Springer, Berlin Acary V, Jean M (2000) Numerical modeling of three dimensional divided structures by the non smooth contact dynamics method: application to masonry structures. In: The fifth international conference on computational structures technology, pp 211–221 Alart P, Curnier A (1991) A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput Methods Appl Mech Eng 92(3):353–375 Anitescu M, Potra FA, Stewart DE (1999) Time-stepping for three-dimensional rigid body dynamics. Comput Methods Appl Mech Eng 177(3):183–197 Armero F, Petőcz E (1998) Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems. Comput Methods Appl Mech Eng 158(3):269–300 Baraff D (1994) Fast contact force computation for nonpenetrating rigid bodies. In: Proceedings of the 21st annual conference on computer graphics and interactive techniques, pp 23–34. ACM, New York, USA Belytschko T, Liu W, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, New York Belytschko T, Mullen R (1976) Mesh partitions of explicit–implicit time integration. In: Formulations and computational algorithms in finite element analysis, pp 673–690 Belytschko T, Mullen R (1978) Stability of explicit–implicit mesh partitions in time integration. Int J Numer Methods Eng 12(10):1575–1586 Belytschko T, Neal M (1991) Contact-impact by the pinball algorithm with penalty and Lagrangian methods. Int J Numer Methods Eng 31:547–572 Betsch P, Steinmann P (2001) Conservation properties of a time fe methodpart ii: time-stepping schemes for non-linear elastodynamics. Int J Numer Methods Eng 50(8):1931–1955 Brogliato B, Ten Dam A, Paoli L, Genot F, Abadie M (2002) Numerical simulation of finite dimensional multibody nonsmooth mechanical systems. Appl Mech Rev 55(2):107–150 Brüls O, Acary V, Cardona A (2014) Simultaneous enforcement of constraints at position and velocity levels in the nonsmooth generalized-\(\alpha \) scheme. Comput Methods Appl Mech Eng 281:131–161 Brun M, Batti A, Limam A, Combescure A (2012) Implicit/explicit multi-time step co-computations for predicting reinforced concrete structure response under earthquake loading. Soil Dyn Earthq Eng 33(1):19–37 Brun M, Batti A, Limam A, Gravouil A (2012) Explicit/implicit multi-time step co-computations for blast analyses on a reinforced concrete frame structure. Finite Elem Anal Des 52:41–59 Carpenter NJ, Taylor RL, Katona MG (1991) Lagrange constraints for transient finite element surface contact. Int J Numer Methods Eng 32(1):103–128 Casadei F (2002) A hierarchic pinball method for contact-impact in fast transient dynamics. In: VI Congresso Nazionale della Società Italiana di Matematica Applicata e Industriale (SIMAI 2002), Chia (Cagliari), Italy, pp 27–31 Chabrand P, Dubois F, Raous M (1998) Various numerical methods for solving unilateral contact problems with friction. Math Comput Model 28(4):97–108 Chantrait T, Rannou J, Gravouil A (2014) Low intrusive coupling of implicit and explicit time integration schemes for structural dynamics: Application to low energy impacts on composite structures. Finite Elem Anal Des 86:23–33 Chen QZ, Acary V, Virlez G, Brüls O (2012) A Newmark-type integrator for flexible systems considering nonsmooth unilateral constraints. In: Eberhard P (ed) IMSD 2012—2nd joint international conference on multibody system dynamics. Stuttgart, Germany Chen QZ, Acary V, Virlez G, Brüls O (2013) A nonsmooth generalized-\(\alpha \) scheme for flexible multibody systems with unilateral constraints. Int J Numer Methods Eng 96(8):487–511 Cirak F, West M (2005) Decomposition contact response (dcr) for explicit finite element dynamics. Int J Numer Methods Eng 64(8):1078–1110 Combescure A, Gravouil A (2001) A time-space multi-scale algorithm for transient structural nonlinear problems. Méc Ind 2(1):43–55 Combescure A, Gravouil A (2002) A numerical scheme to couple subdomains with different time-steps for predominantly linear transient analysis. Comput Methods Appl Mech Eng 191(11):1129–1157 Combescure A, Gravouil A, Herry B (2003) An algorithm to solve transient structural non-linear problems for non-matching time-space domains. Comput Struct 81(12):1211–1222 Courant R, Friedrichs K, Lewy H (1928) Über die partiellen differenzengleichungen der mathematischen physik. Math Ann 100(1):32–74 Curnier A (1999) Unilateral contact. In: New developments in contact problems, pp 1–54. Springer, Wien Dabaghi F, Petrov A, Pousin J, Renard Y (2014) Convergence of mass redistribution method for the one-dimensional wave equation with a unilateral constraint at the boundary. ESAIM Math Model Numer Anal 48(4):1147–1169 De Saxcé G, Feng ZQ (1998) The bipotential method: a constructive approach to design the complete contact law with friction and improved numerical algorithms. Math Comput Model 28(4):225–245 Deuflhard P, Krause R, Ertel S (2008) A contact-stabilized newmark method for dynamical contact problems. Int J Numer Methods Eng 73(9):1274–1290 Dostál Z, Kozubek T, Vlach O, Brzobohatỳ T (2015) Reorthogonalization-based stiffness preconditioning in feti algorithms with applications to variational inequalities. Numer Linear Algebra Appl 22(6):987–998 Erickson D, Weber M, Sharf I (2003) Contact stiffness and damping estimation for robotic systems. Int J Robot Res 22(1):41–57 Faucher V, Combescure A (2003) A time and space mortar method for coupling linear modal subdomains and non-linear subdomains in explicit structural dynamics. Comput Methods Appl Mech Eng 192(5):509–533 Feng ZQ, Joli P, Cros JM, Magnain B (2005) The bi-potential method applied to the modeling of dynamic problems with friction. Comput Mech 36(5):375–383 Fetecau R, Marsden JE, West M (2003) Variational multisymplectic formulations of nonsmooth continuum mechanics. In: Perspectives and problems in nolinear science, pp 229–261. Springer Fetecau RC, Marsden JE, Ortiz M, West M (2003) Nonsmooth Lagrangian mechanics and variational collision integrators. SIAM J Appl Dyn Syst 2(3):381–416 Géradin M, Rixen DJ (2014) Mechanical vibrations: theory and application to structural dynamics. Wiley, New York Gravouil A, Combescure A (2001) Multi-time-step explicit–implicit method for non-linear structural dynamics. Int J Numer Methods Eng 50(1):199–225 Gravouil A, Combescure A (2003) Multi-time-step and two-scale domain decomposition method for non-linear structural dynamics. Int J Numer Methods Eng 58(10):1545–1569 Gravouil A, Combescure A, Brun M (2015) Heterogeneous asynchronous time integrators for computational structural dynamics. Int J Numer Methods Eng 102(3–4):202–232 Har J, Tamma K (2012) Advances in computational dynamics of particles, materials and structures. Wiley, Singapore Harmon D, Vouga E, Smith B, Tamstorf R, Grinspun E (2009) Asynchronous contact mechanics. ACM Trans Graph 28(3):87:1–87:12 Hesch C, Betsch P (2009) A mortar method for energy-momentum conserving schemes in frictionless dynamic contact problems. Int J Numer Methods Eng 77(10):1468–1500 Hesch C, Betsch P (2011) Transient 3d contact problemsnts method: mixed methods and conserving integration. Comput Mech 48(4):437–449 Hesch C, Betsch P (2011) Transient three-dimensional contact problems: mortar method. Mixed methods and conserving integration. Comput Mech 48(4):461–475 Hughes TJ (2012) The finite element method: linear static and dynamic finite element analysis. Courier Corporation, Kendallville Hughes TJ, Taylor RL, Sackman JL, Curnier A, Kanoknukulchai W (1976) A finite element method for a class of contact-impact problems. Comput Methods Appl Mech Eng 8(3):249–276 Jean M (1999) The non-smooth contact dynamics method. Comput Methods Appl Mech Eng 177(3):235–257 Jourdan F, Alart P, Jean M (1998) A Gauss–Seidel like algorithm to solve frictional contact problems. Comput Methods Appl Mech Eng 155(1):31–47 Kane C, Marsden J, Ortiz M, West M (2000) Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems. Int J Numer Methods Eng 49:1295–1325 Kikuchi N, Oden JT (1988) Contact problems in elasticity: a study of variational inequalities and finite element methods. SIAM, Philadelphia Konyukhov A, Schweizerhof K (2015) On some aspects for contact with rigid surfaces: surface-to-rigid surface and curves-to-rigid surface algorithms. Comput Methods Appl Mech Eng 283:74–105 Krenk S (2006) Energy conservation in Newmark based time integration algorithms. Comput Methods Appl Mech Eng 195(44):6110–6124 Laursen T, Chawla V (1997) Design of energy conserving algorithms for frictionless dynamic contact problems. Int J Numer Methods Eng 40(5):863–886 Laursen TA (2002) Computational contact and impact mechanics: fundamentals of modeling interfacial phenomena in nonlinear finite element analysis. Springer, Berlin Leine RI, Aeberhard U, Glocker C (2009) Hamiltons principle as variational inequality for mechanical systems with impact. J Nonlinear Sci 19(6):633–664 Lemaitre J, Chaboche JL, Benallal A, Desmorat R (2009) Mécanique des Matériaux Solides–3eme édition. Dunod Lew A, Marsden J, Ortiz M, West M (2004) Variational time integrators. Int J Numer Methods Eng 60(1):153–212 Litewka P (2015) Frictional beam-to-beam multiple-point contact finite element. Comput Mech 56(2):243–264 Mahjoubi N (2010) Méthode générale de couplage de schéma d’intégration multiéchelle en temps en dynamique des structures. Ph.D. thesis, Institut National des Sciences Appliquées de Lyon Mahjoubi N, Gravouil A, Combescure A, Greffet N (2011) A monolithic energy conserving method to couple heterogeneous time integrators with incompatible time steps in structural dynamics. Comput Methods Appl Mech Eng 200(9):1069–1086 Mahjoubi N, Krenk S (2010) Multi-time-step domain coupling method with energy control. Int J Numer Methods Eng 83(13):1700–1718 Marsden JE, West M (2001) Discrete mechanics and variational integrators. Acta Numer 2001(10):357–514 Meier C, Wall WA, Popp A (2017) A unified approach for beam-to-beam contact. Comput Methods Appl Mech Eng 315:972–1010 Moreau JJ (1978) Approximation en graphe d’une évolution discontinue. RAIRO Anal Numer 12(1):75–84 Moreau JJ (1988) Unilateral contact and dry friction in finite freedom dynamics. In: Nonsmooth mechanics and applications, pp 1–82. Springer, Wien Moreau JJ (1999) Numerical aspects of the sweeping process. Comput Methods Appl Mech Eng 177(3):329–349 Moreau JJ (2003) Modélisation et simulation de matériaux granulaires. In: Actes du 35eme Congres National d’Analyse Numérique Neto AG, Pimenta PM, Wriggers P (2016) A master-surface to master-surface formulation for beam to beam contact. Part I: frictionless interaction. Comput Methods Appl Mech Eng 303:400–429 Raous M (1999) Quasistatic Signorini problem with Coulomb friction and coupling to adhesion. In: New developments in contact problems, pp 101–178. Springer, Wien Ryckman RA, Lew AJ (2012) An explicit asynchronous contact algorithm for elastic body-rigid wall interaction. Int J Numer Methods Eng 89(7):869–896 Schindler T, Acary V (2014) Timestepping schemes for nonsmooth dynamics based on discontinuous Galerkin methods: definition and outlook. Math Comput Simul 95:180–199 Simo J, Tarnow N (1992) The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics. Zeitschrift für angewandte Mathematik und Physik ZAMP 43(5):757–792 Simo JC, Laursen T (1992) An augmented Lagrangian treatment of contact problems involving friction. Comput Struct 42(1):97–116 Simo JC, Tarnow N, Wong K (1992) Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics. Comput Methods Appl Mech Eng 100(1):63–116 Stewart DE (1997) Existence of solutions to rigid body dynamics and the painlevé paradoxes. Comptes Rendus de l’Académie des Sciences-Series I-Mathematics 325(6):689–693 Stewart DE (1998) Convergence of a time-stepping scheme for rigid-body dynamics and resolution of painlevé’s problem. Arch Ration Mech Anal 145(3):215–260 Taylor RL, Papadopoulos P (1993) On a finite element method for dynamic contact/impact problems. Int J Numer Methods Eng 36(12):2123–2140 Wang D, Conti C, Beale D (1999) Interference impact analysis of multibody systems. J Mech Des 121(1):128–135 Wriggers P (1999) Finite elements for thermomechanical contact and adaptive finite element analysis of contact problems. In: New developments in contact problems, pp 179–246. Springer, Wien Wu SC, Yang SM, Haug EJ (1986) Dynamics of mechanical systems with Coulomb friction, stiction, impact and constraint addition-deletion-II Planar systems. Mech Mach Theory 21(5):407–416 Wu SR (2006) Lumped mass matrix in explicit finite element method for transient dynamics of elasticity. Comput Methods Appl Mech Eng 195(44):5983–5994