A new energy‐based isothermal and thermo‐mechanical fatigue lifetime prediction model for aluminium–silicon–magnesium alloy

Fatigue and Fracture of Engineering Materials and Structures - Tập 36 Số 12 - Trang 1323-1335 - 2013
G.H. Farrahi1, Mohammad Azadi1, George Winter2, Wilfried Eichlseder2
1School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
2Chair of Mechanical Engineering, University of Leoben, Leoben, Austria

Tóm tắt

ABSTRACTIn this paper, a new fatigue lifetime prediction model is presented for the aluminium–silicon–magnesium alloy, A356.0. This model is based on the plastic strain energy density per cycle including two correction factors in order to consider the effect of the mean stress and the maximum temperature. The thermal term considers creep and oxidation damages in A356.0 alloy. To calibrate the model, isothermal fatigue and out‐of‐phase thermo‐mechanical fatigue (TMF) tests were conducted on the A356.0 alloy. Results showed an improvement in predicting fatigue lifetimes by the present model in comparison with classical theories and also the plastic strain energy density (without any correction factors). Therefore, this model is applicable for TMF, low cycle fatigue (LCF) and both TMF/LCF lifetimes of the A356.0 alloy. Furthermore, this model can be easily used for the estimation of thermo‐mechanical conditions in components such as cylinder heads.

Từ khóa


Tài liệu tham khảo

10.1016/j.msea.2006.07.003

10.1016/j.proeng.2011.04.228

10.1016/j.ijfatigue.2007.01.054

10.1016/j.ijfatigue.2007.01.007

Koeberl H., 2011, Lifetime calculation of thermo‐mechanically loaded materials (Al, Cu, Ni and Fe alloys) based on empirical methods. Fatigue and Fracture Mechanics, J. ASTM Int., 37, 589

10.1016/j.ijfatigue.2009.11.003

Coffin L. F., 1954, A study on the effect of cyclic thermal stresses on a ductile metal, Trans. ASME, 76, 931

Morrow J., 1965, Cyclic plastic strain energy and fatigue of metals. Internal Friction, Damping and Cyclic Plasticity, Am. Soc. Test. Mater., 378, 45

Smith K. N., 1970, A stress–strain function for the fatigue of metals, J. Mater., 5, 767

10.1520/JTE10520J

Halford G. R., 1976, Life prediction of thermal‐mechanical fatigue using strain range partitioning. Thermal Fatigue of Materials and Components, Am. Soc. Test. Mater., 612, 239

10.1007/BF02663208

10.1017/CBO9781139167970

10.1111/j.1460-2695.1988.tb01216.x

10.1046/j.1460-2695.2001.00415.x

Rabotnov Y. N., 1969, Creep Problems in Structural Members

Kachanov L. M., 1958, Time of the rupture process under creep conditions. Izvestiia Akademia Nauk SSSR, Otdelenie Technicheskich Nauk, 8, 26

Tomkins B. Sumner G.andWareing J.(1979).Factors affecting crack propagation in low cycle fatigue.Proc.Int.Symp.Low Cycle Fatigue Strength and Elasto‐plastic Behavior in Mater. Stuttgart Germany.

10.1016/j.ijfatigue.2010.02.004

10.1016/j.ijfatigue.2010.02.005

10.1046/j.1460-2695.2002.00612.x

10.1111/j.1460-2695.1996.tb00967.x

10.1179/mst.1991.7.5.427

10.1016/S0142-1123(00)00002-5

10.1016/S0308-0161(02)00135-7

10.1007/s11012-006-9020-z

10.1016/0142-1123(96)00088-6

10.1111/j.1460-2695.2009.01424.x

10.1111/ffe.12006

10.1111/j.1460-2695.2011.01617.x

Ashby M. F., 1996, Engineering Materials 1: An Introduction to their Properties and Applications

Smith W. F., 2003, Foundation of Materials Science and Engineering

10.1016/j.ijfatigue.2005.06.025

10.1016/j.msea.2006.08.132